Nasal powder formulation employing microenvironmental pH-modifier for rapid absorption of mirtazapine

Kohei Yamada, Tsubasa Kihara, Kaori Shinsato, Hirofumi Yasui, Michihiro Shino, Hideyuki Sato, Satomi Onoue

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100068.

PDF(977 KB)
PDF(977 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100068. DOI: 10.1016/j.pscia.2025.100068
Research article

Nasal powder formulation employing microenvironmental pH-modifier for rapid absorption of mirtazapine

Author information +
History +

Abstract

Antidepressant mirtazapine (MRZ) has been drawing attention in the management of delirium. However, oral use of MRZ could have drawbacks in onset of actions and ease of administration by caregivers. This study was the first attempt to develop nasal powder formulation (NP), an easily-administered formulation, of MRZ containing a microenvironmental pH-modifier for rapid dissolution and absorption. Ten mixtures of MRZ and counterions were tested in terms of the supersaturation level and stability to select a favorable pH-modifier. NP of MRZ (NP/MRZ) with the selected counterion was prepared by jet milling and characterized regarding physicochemical properties and pharmacokinetic (PK) behaviors after intranasal administration to rabbits. In phosphate buffer solution (PBS, pH5.6), glutamic acid (Glu) showed 10.7-fold supersaturation of MRZ, with the value being the highest among the ten counterions tested. The addition of Glu led to no significant change in the photostability or chemical stability of MRZ compared with crystalline MRZ. NP/MRZ with Glu (NP/MRZ-E) consisted of microcrystals of MRZ and Glu attached to lactose carriers, and over 93% of MRZ was emitted from a capsule in Jetlizer™. Both NP/MRZ-E and NP/MRZ exhibited enhanced dissolution in PBS compared with crystalline MRZ, and more rapid dissolution was observed for NP/MRZ-E. In rabbits, a crushed MRZ tablet (3 ​mg-MRZ/kg, p.o.) exhibited a time to maximum plasma concentration (Tmax) and bioavailability (BA) of 72 ​min and 10%, respectively. NP/MRZ-E (0.3 ​mg-MRZ/kg, i.n.) showed Tmax of <5 ​min with BA of 93%, and this result might be due to rapid dissolution/permeation in nasal mucosa and avoidance of the hepatic first-pass effect. In conclusion, NP employing a microenvironmental pH-modifier would be a promising dosage form of MRZ to offer rapid nasal absorption.

Keywords

Bioavailability / Dissolution enhancement / Mirtazapine / Microenvironmental pH-modification / Nasal powder formulation

Cite this article

Download citation ▾
Kohei Yamada, Tsubasa Kihara, Kaori Shinsato, Hirofumi Yasui, Michihiro Shino, Hideyuki Sato, Satomi Onoue. Nasal powder formulation employing microenvironmental pH-modifier for rapid absorption of mirtazapine. Pharmaceutical Science Advances, 2025, 3(0): 100068 https://doi.org/10.1016/j.pscia.2025.100068

References

[1]
T.H. de Boer, G. Maura, M. Raiteri, C.J. de Vos, J. Wieringa, R.M. Pinder, Neurochemical and autonomic pharmacological profiles of the 6-aza-analogue of mianserin, Org 3770 and its enantiomers, Neuropharmacology 27 (4) (1988) 399-408, https://doi.org/10.1016/0028-3908(88)90149-9.
[2]
Y. Okumura, K. Hatta, K. Wada, T. Takeuchi, Y. Kishi, Expert opinions on the firstline pharmacological treatment for delirium in Japan: a conjoint analysis, Int. Psychogeriatr. 28 (6) (2016) 1041-1050, https://doi.org/10.1017/S1041610215002446.
[3]
A. Imanaka, H. Takami, H. Hakomori, K. Ishii, K. Oda, R. Morikawa, F. Yoshinaga, Utility of mirtazapine for the treatment of delirium in geriatric patients, Clinical psychiatry 53 (11) (2011) 1123-1125, https://doi.org/10.11477/mf.1405102029.
[4]
T.A. Kuiken, L. Schechtman, R.N. Harden, Phantom limb pain treatment with mirtazapine: a case series, Pain Pract. 5 (4) (2005) 356-360, https://doi.org/10.1111/j.1533-2500.2005.00038.x.
[5]
G. Voortman, J.E. Paanakker, Bioavailability of mirtazapine from Remeron® tablets after single and multiple oral dosing, Hum. Psychopharmacol. Clin. Exp. 10 (S2) (1995) S83-S96, https://doi.org/10.1002/hup.470100803.
[6]
D. Ichikura, S. Nawata, N. Kohyama, M. Tokunaga, N. Hida, T. Yamazaki, S. Takenoshita, N. Uchida, A. Minemura, T. Sasaki, Clinical pharmacokinetics of mianserin suppositories in healthy older Japanese male adults: a pilot study, Rinsho yakuri/Japanese Journal of Clinical Pharmacology and Therapeutics 50 (2) (2019) 23-30, https://doi.org/10.3999/jscpt.50.23.
[7]
A. Fortuna, G. Alves, A. Serralheiro, J. Sousa, A. Falcão, Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules, Eur. J. Pharm. Biopharm. 88 (1) (2014) 8-27, https://doi.org/10.1016/j.ejpb.2014.03.004.
[8]
N.G.M. Schipper, J.C. Verhoef, F.W.H.M. Merkus, The nasal mucociliary clearance: relevance to nasal drug delivery, Pharm. Res. 8 (7) (1991) 807-814, https://doi.org/10.1023/A:1015830907632.
[9]
E. Marttin, N.G.M. Schipper, J.C. Verhoef, F.W.H.M. Merkus, Nasal mucociliary clearance as a factor in nasal drug delivery, Adv. Drug Deliv. Rev. 29 (1) (1998) 13-38, https://doi.org/10.1016/S0169-409X(97)00059-8.
[10]
D. Inoue, S. Kimura, A. Kiriyama, H. Katsumi, A. Yamamoto, K.-i. Ogawara, K. Higaki, A. Tanaka, R. Yutani, T. Sakane, T. Furubayashi, Quantitative estimation of the effect of nasal mucociliary function on in vivo absorption of norfloxacin after intranasal administration to rats, Mol. Pharm. 15 (10) (2018) 4462-4469, https://doi.org/10.1021/acs.molpharmaceut.8b00464.
[11]
Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications, Int. J. Pharm. 420 (1) (2011) 1-10, https://doi.org/10.1016/j.ijpharm.2011.08.032.
[12]
D. H€orter, J.B. Dressman,Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract1, Adv. Drug Deliv. Rev. 46 (1) (2001) 75-87, https://doi.org/10.1016/S0169-409X(00)00130-7.
[13]
M. Mosharraf, C. Nystr€om, The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs, Int. J. Pharm. 122 (1) (1995) 35-47, https://doi.org/10.1016/0378-5173(95)00033-F.
[14]
P. Guerrieri, K. Jarring, L.S. Taylor, Impact of counterion on the chemical stability of crystalline salts of procaine, J. Pharmaceut. Sci. 99 (9) (2010) 3719-3730, https://doi.org/10.1002/jps.22009.
[15]
C. Taniguchi, Y. Kawabata, K. Wada, S. Yamada, S. Onoue, Microenvironmental pHmodification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility, Expet Opin. Drug Deliv. 11 (4) (2014) 505-516, https://doi.org/10.1517/17425247.2014.881798.
[16]
S. He, H. Mu, Microenvironmental pH modification in buccal/sublingual dosage forms for systemic drug delivery, Pharmaceutics 15 (2) (2023) 637, https://doi.org/10.3390/pharmaceutics15020637.
[17]
S.I.F. Badawy, M.A. Hussain, Microenvironmental pH modulation in solid dosage forms, J. Pharmaceut. Sci. 96 (5) (2007) 948-959, https://doi.org/10.1002/jps.20932.
[18]
H. Okamoto, M. Aoki, K. Danjo, A novel apparatus for rat in vivo evaluation of dry powder formulations for pulmonary administration, J. Pharmaceut. Sci. 89 (8) (2000) 1028-1035, https://doi.org/10.1002/1520-6017(200008)89:8%3C1028:AID-JPS7%3E3.0.CO;2-3.
[19]
K. Yamada, A. Hirata, H. Sato, S. Onoue, Nanocarriers with long-term retention in the respiratory system for prolonged drug exposure, Pharmaceut. Dev. Technol. 29 (5) (2024) 477-481, https://doi.org/10.1080/10837450.2024.2346292.
[20]
K.P. Bhusari, M.R. Tajne, A. R.H., Stress degradation studies and development of validated stability indicating method for assay of mirtazapine, Res. J. Chem. Sci. 1 (4) (2011) 74-79. Retrieved from, https://www.isca.in/.
[21]
C. Neuberg, Hydrotropic phenomena, Biochem. Z. 76 (1916) 107-176.
[22]
W. Kunz, K. Holmberg, T. Zemb, Hydrotropes, Curr. Opin. Colloid Interface Sci. 22 (2016) 99-107, https://doi.org/10.1016/j.cocis.2016.03.005.
[23]
M.S. Alsalhi, K.L.A. Chan, Amino acid hydrotropes to increase the solubility of indomethacin and carbamazepine in aqueous solution, Int. J. Pharm. 617 (2022) 121591, https://doi.org/10.1016/j.ijpharm.2022.121591.
[24]
M. Ghazwani, R. Vasudevan, G. Kandasamy, N. Manusri, P. Devanandan, R.C. Puvvada, V.P. Veeramani, P. Paulsamy, K. Venkatesan, K. Chidmabaram, R. Dhurke, Formulation of intranasal mucoadhesive thermotriggered in situ gel containing mirtazapine as an antidepressant drug, Gels 9 (6) (2023) 457, https://doi.org/10.3390/gels9060457.
[25]
E.F. Mellon, S.R. Hoover, Hygroscopicity of amino acids and its relationship to the vapor phase water absorption of Proteins2,3, J. Am. Chem. Soc. 73 (8) (1951) 3879-3882. Retrieved from, https://pubs.acs.org/journal/jacsat.
[26]
K.J. Holm, A. Markham, Mirtazapine, Drugs 57 (4) (1999) 607-631. Retrieved from, https://link.springer.com/journal/40265.
PDF(977 KB)

Accesses

Citations

Detail

Sections
Recommended

/