Preparation and characterization of tadalafil-loaded hydrogel: An in-vivo evaluation of wound healing activity

Anita Sadat Haji Seyed Javadi Pajouhi, Amir Larki-Harcheghani, Mojdeh Mohammadi, Sajjad Makhdoomi, Alireza Nourian, Katayoun Derakhshandeh

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100066.

PDF(1752 KB)
PDF(1752 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100066. DOI: 10.1016/j.pscia.2025.100066
Research article

Preparation and characterization of tadalafil-loaded hydrogel: An in-vivo evaluation of wound healing activity

Author information +
History +

Abstract

Tadalafil (TD) is a phosphodiesterase type 5 (PDE-5) inhibitor that has gained attention for its wound healing properties. In this study, a TD-loaded hydrogel was prepared and characterized, and its wound-healing efficacy was evaluated. After preparing the TD hydrogel, its physicochemical properties such as viscosity, pH, drug-loading capacity (DL%), in vitro release behavior, and stability were characterized. Moreover, in vivo studies were performed to evaluate hydroxyproline (HP) and the wound healing efficacy of 1, 1.5, 3% (w/w) TD hydrogels in New Zealand rabbits. Histopathological analysis was also performed using hematoxylin and eosin (H&E) staining. We successfully prepared a TD hydrogel with high stability. The results of the in vivo experiments on full-thickness wounds showed that the 1.5% TD hydrogel with a pH of 5.81 ​± ​0.421, viscosity of 12,435 ​± ​63, drug-loading capacity of 91.73 ​± ​1.482%, and drug release rate of 88% was superior to other formulations when HP level was increased, which decreased the time required for wound healing; this was corroborated by the histological analysis. Thus, the TD hydrogel formulation prepared in this study is a promising topical therapeutic agent for wound healing.

Keywords

Tadalafil / Hydrogel / Wound healing / Hydroxyproline / Phosphodiesterase type 5 inhibitor

Cite this article

Download citation ▾
Anita Sadat Haji Seyed Javadi Pajouhi, Amir Larki-Harcheghani, Mojdeh Mohammadi, Sajjad Makhdoomi, Alireza Nourian, Katayoun Derakhshandeh. Preparation and characterization of tadalafil-loaded hydrogel: An in-vivo evaluation of wound healing activity. Pharmaceutical Science Advances, 2025, 3(0): 100066 https://doi.org/10.1016/j.pscia.2025.100066

References

[1]
R. Nejati, D. Kovacic, A. Slominski, Neuro-immune-endocrine functions of the skin: an overview, Expet Rev. Dermatol. 8 (6) (2013) 581-583, https://doi.org/10.1586/17469872.2013.856690.
[2]
K.A.B. Nogueira, J.R.P. Martins, T.S. Lima, J.W.B.A. Junior, A.L. do Carmo Aquino, L. M.F. de Lima, J.O. Eloy, R. Petrilli, Topical drug delivery using liposomes and liquid crystalline phases for skin cancer therapy, Advances in Novel Formulations for Drug Delivery (2023) 153-176, https://doi.org/10.1002/9781394167708.ch8.
[3]
Z. Zhang, B.B. Michniak-Kohn, Tissue engineered human skin equivalents, Pharmaceutics 4 (1) (2012) 26-41, https://doi.org/10.3390/pharmaceutics4010026.
[4]
W.A. Dorsett-Martin, Rat models of skin wound healing: a review, Wound Repair Regen. 12 (6) (2004) 591-599, https://doi.org/10.1111/j.1067-1927.2004.12601.x.
[5]
M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound healing: a cellular perspective, Physiol. Rev. 99 (1) (2019) 665-706, https://doi.org/10.1152/physrev.00067.2017.
[6]
A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite hydrogels for biomedical applications, Biotechnol. Bioeng. 111 (3) (2014) 441-453, https://doi.org/10.1002/bit.25160.
[7]
P. Qin, J. Tang, D. Sun, Y. Yang, N. Liu, Y. Li, Z. Fu, Y. Wang, C. Li, X. Li, Zn2þ cross-linked alginate carrying hollow silica nanoparticles loaded with RL-QN15 peptides provides promising treatment for chronic skin wounds, ACS applied materials & interfaces 14 (26) (2022) 29491-29505, https://doi.org/10.1021/acsami.2c03583.
[8]
Q. Jia, Z. Fu, Y. Li, Z. Kang, Y. Wu, Z. Ru, Y. Peng, Y. Huang, Y. Luo, W. Li, Hydrogel loaded with peptide-containing nanocomplexes: symphonic cooperation of photothermal antimicrobial nanoparticles and prohealing peptides for the treatment of infected wounds, ACS Appl. Mater. Interfaces 16 (11) (2024) 13422-13438, https://doi.org/10.1021/acsami.3c16061.
[9]
W.C. Huang, R. Ying, W. Wang, Y. Guo, Y. He, X. Mo, C. Xue, X. Mao, A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing, Adv. Funct. Mater. 30(21) (2020) 2000644.
[10]
A.W. Jatoi, H. Ogasawara, I.S. Kim, Q.-Q. Ni, Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications, Mater. Lett. 241 (2019) 168-171.
[11]
M.T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam, A. Moghaddam, Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials, Carbohydrate polymers 207 (2019) 542-554, https://doi.org/10.1016/j.carbpol.2018.12.021.
[12]
R. Pofi, E. Giannetta, T. Feola, N. Galea, F. Barbagallo, F. Campolo, R. Badagliacca, B. Barbano, F. Ciolina, G. Defeudis, Sex-specific effects of daily tadalafil on diabetic heart kinetics in RECOGITO, a randomized, double-blind, placebo-controlled trial, Sci. Transl. Med. 14 (649) (2022) eabl8503, https://doi.org/10.1126/scitranslmed.abl8503.
[13]
A. Jarad, Diabetic Wound Healing Enhancement by Tadalafil, 2020.
[14]
C. Davenport, A. Dubin, Tadalafil therapy and severe chronic foot wound resolution, Int. Wound J. 12 (6) (2015) 733-736, https://doi.org/10.1111/iwj.12378.
[15]
N.N. Mahmoud, S. Hikmat, D.A. Ghith, M. Hajeer, L. Hamadneh, D. Qattan, E.A. Khalil, Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: effect of nanoparticles’ shape and surface modification, Int. J. Pharm. 565 (2019) 174-186, https://doi.org/10.1016/j.ijpharm.2019.04.079.
[16]
K. Goldsmith, E. Goradia, S.A. McClain, S. Sandoval, A.J. Singer, The effect of tadalafil on reepithelialization and scarring of partial thickness porcine burns, Wound Repair Regen. 28 (1) (2020) 26-32, https://doi.org/10.1111/wrr.12770.
[17]
R.A. Souza, C.P. Martinelli-Kl€ay, A.J. d’Acampora, G.J. Bernardes, S.M. Sgrott, L. A. Souza, T. Lombardi, T.R. Sudbrack, Effects of sildenafil and tadalafil on skin flap viability, Arch. Dermatol. Res. 314 (2) (2022) 151-157, https://doi.org/10.1007/s00403-021-02196-0.
[18]
N. Galiè, B.H. Brundage, H.A. Ghofrani, R.J. Oudiz, G. Simonneau, Z. Safdar, S. Shapiro, R.J. White, M. Chan, A. Beardsworth, Tadalafil therapy for pulmonary arterial hypertension, Circulation 119 (22) (2009) 2894-2903, https://doi.org/10.1161/CIRCULATIONAHA.108.839274.
[19]
A.M. Elsherbini, S.A. Sabra, S.A. Rashed, D.A. Abdelmonsif, M. Haroun, T. I. Shalaby, Electrospun polyvinyl alcohol/Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers, Nanomedicine (2023), https://doi.org/10.2217/nnm-2023-0127.
[20]
J.-S. Baek, C.-W. Cho, Transdermal delivery of tadalafil using a novel formulation, Drug Deliv. 23 (5) (2016) 1571-1577, https://doi.org/10.3109/10717544.2015.1077291.
[21]
M. Yunoos, D.G. Sankar, B.P. Kumar, S. Hameed, UV spectrophotometric method for the estimation of tadalafil in bulk and tablet dosage form, J. Chem. 7 (2010) 833-836.
[22]
A.A. Hemmati, F. Mohammadian, An investigation into the effects of mucilage of quince seeds on wound healing in rabbit, J. Herbs, Spices, Med. Plants 7 (4) (2000) 41-46.
[23]
M.-H. Schmid-Wendtner, H.C. Korting, The pH of the skin surface and its impact on the barrier function, Skin Pharmacol, Physiol 19 (6) (2006) 296-302, https://doi.org/10.1159/000094670.
[24]
F.S. Razavi, A. Salimi, Nanoemulsion based hydrogels for topical delivery of tadalafil: formulation, physicochemical properties and in vitro drug release studies, Eur. J. Biomed 8 (7) (2021) 59-64.
[25]
H.F. Salem, R.M. Kharshoum, S.M. Awad, M. Ahmed Mostafa, H.A. Abou-Taleb, Tailoring of retinyl palmitate-based ethosomal hydrogel as a novel nanoplatform for acne vulgaris management: Fabrication, optimization, and clinical evaluation employing a split-face comparative study, Int. J. Nanomed. (2021) 4251-4276, https://doi.org/10.2147/IJN.S301597.
[26]
P. Batheja, L. Sheihet, J. Kohn, A.J. Singer, B. Michniak-Kohn, Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies, J. Contr. Release 149 (2) (2011) 159-167, https://doi.org/10.1016/j.jconrel.2010.10.005.
[27]
W. Wang, E. Wat, P.C. Hui, B. Chan, F.S. Ng, C.-W. Kan, X. Wang, H. Hu, E.C. Wong, C. B. Lau, Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment, Sci. Rep. 6 (1) (2016) 24112, https://doi.org/10.1038/srep24112.
[28]
K.K. Abla, A.T. Mneimneh, A.N. Allam, M.M. Mehanna, Application of box-behnken design in the preparation, optimization, and in-vivo pharmacokinetic evaluation of oral tadalafil-loaded niosomal film, Pharmaceutics 15 (1) (2023) 173, https://doi.org/10.3390/pharmaceutics15010173.
[29]
S. Taymouri, S. Amirkhani, M. Mirian, Fabrication and characterization of injectable thermosensitive hydrogel containing dipyridamole loaded polycaprolactone nanoparticles for bone tissue engineering, J. Drug Deliv. Sci. Technol. 64 (2021) 102659.
[30]
P. Olczyk, Ł. Mencner, K. Komosinska-Vassev, The role of the extracellular matrix components in cutaneous wound healing, BioMed Res. Int. 2014 (2014), https://doi.org/10.1155/2014/747584.
[31]
P. Thangavel, B. Ramachandran, S. Chakraborty, R. Kannan, S. Lonchin, V. Muthuvijayan, Accelerated healing of diabetic wounds treated with L-glutamic acid loaded hydrogels through enhanced collagen deposition and angiogenesis: an in vivo study, Sci. Rep. 7 (1) (2017) 10701, https://doi.org/10.1038/s41598-017-10882-1.
[32]
B. Alkhawaja, F. Al-Akayleh, A. Al-Khateeb, J. Nasereddin, B.Y. Ghanim, A. Bolhuis, N. Jaber, M. Al-Remawi, N.A. Qinna, Deep eutectic liquids as a topical vehicle for tadalafil: characterisation and potential wound healing and antimicrobial activity, Molecules 28 (5) (2023) 2402, https://doi.org/10.3390/molecules28052402.
[33]
F. García-Villén, A. Faccendini, D. Miele, M. Ruggeri, R. Sánchez-Espejo, A. Borrego-Sánchez, P. Cerezo, S. Rossi, C. Viseras, G. Sandri, Wound healing activity of nanoclay/spring water hydrogels, Pharmaceutics 12 (5) (2020) 467, https://doi.org/10.3390/pharmaceutics12050467.
[34]
Z. Fu, H. Sun, Y. Wu, C. Li, Y. Wang, Y. Liu, Y. Li, J. Nie, D. Sun, Y. Zhang, A cyclic heptapeptide-based hydrogel boosts the healing of chronic skin wounds in diabetic mice and patients, NPG Asia Mater. 14 (1) (2022) 99.
[35]
A.N. Ordeghan, D. Khayatan, M.R. Saki, M. Alam, K. Abbasi, H. Shirvani, M. Yazdanian, R.S. Soufdoost, H.T. Raad, A. Karami, The wound healing effect of nanoclay, collagen, and tadalafil in diabetic rats: an in vivo study, Adv. Mater. Sci. Eng. 2022 (2022) 1-10.
[36]
R.G. Jansen, T.H. van Kuppevelt, W.F. Daamen, A.M. Kuijpers-Jagtman, J.W. Von den Hoff, Tissue reactions to collagen scaffolds in the oral mucosa and skin of rats: environmental and mechanical factors, Arch. Oral Biol. 53 (4) (2008) 376-387, https://doi.org/10.1016/j.archoralbio.2007.11.003.
[37]
E. Rostami, M. Maleki, R. Koohestani, M.R. Oghazi, E.A. Safavi, F. Hayati, Effect of intermittent fasting on saving zone of stasis in burn wounds in rats, Burns 49 (4)(2023) 901-913, https://doi.org/10.1016/j.burns.2022.06.010.
[38]
S.S. Mathew-Steiner, S. Roy, C.K. Sen, Collagen in wound healing, Bioengineering 8(5) (2021) 63, https://doi.org/10.3390/bioengineering8050063.
[39]
M. Nemr, M.A. Abdelaziz, M. Teleb, A.E. Elmasry, Y.A. Elshaier, An overview on pharmaceutical applications of phosphodiesterase enzyme 5 (PDE5) inhibitors, Mol. Divers (2024) 1-21, https://doi.org/10.1007/s11030-024-11016-2.
[40]
J. Yoo, K.-M. Thai, D.-K. Kim, J.Y. Lee, H.-J. Park, 3D-QSAR studies on sildenafil analogues, selective phosphodiesterase 5 inhibitors, Bioorg. Med. Chem. Lett 17(15) (2007) 4271-4274, https://doi.org/10.1016/j.bmcl.2007.05.064.
[41]
S.K. Chhonker, D. Rawat, R.K. Koiri, Repurposing PDE5 inhibitor tadalafil and sildenafil as anticancer agent against hepatocellular carcinoma via targeting key events of glucose metabolism and multidrug resistance, J. Biochem. Mol. Toxicol. 36 (8) (2022) e23100, https://doi.org/10.1002/jbt.23100.
[42]
K. Korhonen, K. Kuttila, J. Niinikoski, Tissue gas tensions in patients with necrotising fasciitis and healthy controls during treatment with hyperbaric oxygen: a clinical study, Eur. J. Surg. 166 (7) (2000) 530-534, https://doi.org/10.1080/110241500750008583.
PDF(1752 KB)

Accesses

Citations

Detail

Sections
Recommended

/