Single-walled carbon nanotubes sensors: Preparation and bio-application advances

Xiaotong Chen, Difan Wang, Wenshuo Ding, Hengchang Zang, Lian Li

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100064.

PDF(2929 KB)
PDF(2929 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100064. DOI: 10.1016/j.pscia.2025.100064
Review article

Single-walled carbon nanotubes sensors: Preparation and bio-application advances

Author information +
History +

Abstract

Molecular recognition and detection are the main concerns in the field of biological analysis because they can be affected by various factors. Single-walled carbon nanotube (SWCNTs)-based optical biosensors have been applied in this field owing to their high sensitivity, good fluorescence stability, and tissue transparency. Purification of single-chiral SWCNTs and surface functionalization of SWCNTs are effective strategies for achieving real-time monitoring and high-throughput screening of biological analytes. Combining these technologies with microfluidic platforms and machine learning algorithms further broadens the application areas of sensors and enhances their analytical performance and usefulness in complex biological systems. Therefore, this review first discusses the preparation methods for single-chiral SWCNTs in recent years and introduces covalent and non-covalent functionalization techniques for SWCNTs, including oligonucleotide chains, peptides, and surfactant modifications. Subsequently, we systematically evaluate the applications of functionalized SWCNT biosensors for recognizing small molecules, including gas phase composition, neurotransmitters, and reactive oxygen species. These biosensors have been shown to have high sensitivity and specificity in the detection of a wide range of small molecules, offering a wide range of possibilities for analyzing volatile organic compounds, signaling molecules, and reactive oxygen species within biological systems, and providing new ways of gaining insights into the complex mechanisms of disease progression. Finally, we have analyzed the ability of SWCNT biosensors to recognize biomolecules in various categories, including proteins, nucleic acids, and lipids. Using these sensors for clinical disease diagnosis improves the accuracy and timeliness of diagnosis and opens up new ways to improve patients' prognosis and quality of life. We believe that SWCNT biosensors have great potential for future development in biomedicine.

Keywords

Single-walled / carbon / nanotubes: / Biosensor: / Functionalization: / Molecular / recognition: / Near-infrared / fluorescence

Cite this article

Download citation ▾
Xiaotong Chen, Difan Wang, Wenshuo Ding, Hengchang Zang, Lian Li. Single-walled carbon nanotubes sensors: Preparation and bio-application advances. Pharmaceutical Science Advances, 2025, 3(0): 100064 https://doi.org/10.1016/j.pscia.2025.100064

References

[1]
L.C. Clark Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29-45, https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
[2]
F. Ghorbani, H. Abbaszadeh, A. Mehdizadeh, M. Ebrahimi-Warkiani, M.-R. Rashidi, M. Yousefi, Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review, Microchim. Acta (2019), https://doi.org/10.1007/s00604-019-3844-4.
[3]
R. Nissler, O. Bader, M. Dohmen, S.G. Walter, C. Noll, G. Selvaggio, U. Gross, S. Kruss, Remote near infrared identification of pathogens with multiplexed nanosensors, Nat. Commun. 11 (1) (2020) 5995, https://doi.org/10.1038/s41467-020-19718-5.
[4]
K. Yum, T.P. McNicholas, B. Mu, M.S. Strano, Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring, J. Diabetes Sci. Technol. (2013), https://doi.org/10.1177/193229681300700109.
[5]
N. Turaeva, Y. Kim, I. Kuljanishvili, An extended model for chirality selection in single-walled carbon nanotubes, Nanoscale Adv. 5 (14) (2023) 3684-3690, https://doi.org/10.1039/d3na00192j.
[6]
J. Ackermann, J.T. Metternich, S. Herbertz, S. Kruss, Biosensing with fluorescent carbon nanotubes, Angewandte Chemie Int (2022), https://doi.org/10.1002/anie.202112372.
[7]
D. Amir, A. Hendler-Neumark, V. Wulf, R. Ehrlich, G. Bisker, Oncometabolite fingerprinting using fluorescent single-walled carbon nanotubes, Adv. Mater. Interfac. (2021), https://doi.org/10.1002/admi.202101591.
[8]
H. Li, C.M. Sims, R. Kang, F. Biedermann, J.A. Fagan, B.S. Flavel, Isolation of the (6,5) single-wall carbon nanotube enantiomers by surfactant-assisted aqueous two-phase extraction, Carbon (2022), https://doi.org/10.1016/j.carbon.2022.12.071.
[9]
S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Structure-assigned optical spectra of single-walled carbon nanotubes, Science (2002), https://doi.org/10.1126/science.1078727.
[10]
P.W. Barone, S. Baik, D.A. Heller, M.S. Strano, Near-infrared optical sensors based on single-walled carbon nanotubes, Nat. Mater. (2004), https://doi.org/10.1038/nmat1276.
[11]
A. Antonucci, M. Reggente, C. Roullier, A.J. Gillen, N. Schuergers, V. Zubkovs, B.P. Lambert, M. Mouhib, E. Carata, L. Dini, A.A. Boghossian, Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics, Nat. Nanotechnol. (2022), https://doi.org/10.1038/s41565-022-01198-x.
[12]
S.S. Nalige, P. Galonska, P. Kelich, L. Sistemich, C. Herrmann, L. Vukovic, S. Kruss, M. Havenith, Fluorescence changes in carbon nanotube sensors correlate with THz absorption of hydration, Nat. Commun. (2024), https://doi.org/10.1038/s41467-024-50968-9.
[13]
A.A. Boghossian, J. Zhang, P.W. Barone, N.F. Reuel, J.H. Kim, D.A. Heller, J.H. Ahn, A.J. Hilmer, A. Rwei, J.R. Arkalgud, C.T. Zhang, M.S. Strano, Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications, ChemSusChem 4 (7) (2011) 848-863, https://doi.org/10.1002/cssc.201100070.
[14]
N. Ouassil, R.L. Pinals, J.T. Del Bonis-O'Donnell, J.W. Wang, M.P. Landry, Supervised learning model predicts protein adsorption to carbon nanotubes, Sci. Adv. (2022), https://doi.org/10.1126/sciadv.abm0898.
[15]
T.V. Galassi, M. Antman-Passig, Z. Yaari, J. Jessurun, R.E. Schwartz, D.A. Heller, Long-term in vivo biocompatibility of single-walled carbon nanotubes, PLoS One (2020), https://doi.org/10.1371/journal.pone.0226791.
[16]
F. Ledesma, S. Nishitani, F.J. Cunningham, J.D. Hubbard, D. Yim, A. Lui, L. Chio, A. Murali, M.P. Landry, Covalent attachment of horseradish peroxidase to single-walled carbon nanotubes for hydrogen peroxide detection, Adv. Funct. Mater.(2024), https://doi.org/10.1002/adfm.202316028.
[17]
C. Farrera, F. Torres Andóon, N. Feliu, Carbon nanotubes as optical sensors in biomedicine, ACS Nano (2017), https://doi.org/10.1021/acsnano.7b06701.
[18]
M.V. Kharlamova, M.G. Burdanova, M.I. Paukov, C. Kramberger, Synthesis, sorting, and applications of single-chirality single-walled carbon nanotubes, Materials (2022), https://doi.org/10.3390/ma15175898.
[19]
M. He, X. Wang, S. Zhang, H. Jiang, F. Cavalca, H. Cui, J.B. Wagner, T.W. Hansen, E. Kauppinen, J. Zhang, F. Ding, Growth kinetics of single-walled carbon nanotubes with a (2n,n) chirality selection, Sci. Adv. (2019), https://doi.org/10.1126/sciadv.aav9668.
[20]
R. Nißler, L. Kurth, H. Li, A. Spreinat, I. Kuhlemann, B.S. Flavel, S. Kruss, Sensing with chirality-pure near-infrared fluorescent carbon nanotubes, Analyt. Chem.(2021), https://doi.org/10.1021/acs.analchem.1c00168.
[21]
F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J.-Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 510 (7506) (2014) 522-524, https://doi.org/10.1038/nature13434.
[22]
S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang, Z. Wang, K. Qi, S. Deng, Q. Li, X. Bai, F. Ding, J. Zhang, Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts, Nature 543 (7644) (2017) 234-238, https://doi.org/10.1038/nature21051.
[23]
A. Nish, J.-Y. Hwang, J. Doig, R.J. Nicholas, Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers, Nat. Nanotechnol. 2 (10)(2007) 640-646, https://doi.org/10.1038/nnano.2007.290.
[24]
S. Ghosh, S.M. Bachilo, R.B. Weisman, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nat. Nanotechnol. 5(6) (2010) 443-450, https://doi.org/10.1038/nnano.2010.68.
[25]
R. Nißler, O. Bader, M. Dohmen, S.G. Walter, C. Noll, G. Selvaggio, U. Groß, S. Kruss, Remote near infrared identification of pathogens with multiplexed nanosensors, Nat. Commun. 11 (1) (2020) 5995, https://doi.org/10.1038/s41467-020-19718-5.
[26]
J.A. Fagan, C.Y. Khripin, C.A. Silvera Batista, J.R. Simpson, E.H. Hároz, A.R. Hight Walker, M. Zheng, Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction, Adv. Math. (2014), https://doi.org/10.1002/adma.201304873.
[27]
R. Nißler, O. Bader, M. Dohmen, S.G. Walter, C. Noll, G. Selvaggio, U. Groß, S. Kruss, Remote near infrared identification of pathogens with multiplexed nanosensors, Nat. Commun. 11 (1) (2020), https://doi.org/10.1038/s41467-020-19718-5.
[28]
X. Luo, X. Wei, L. Liu, Z. Yao, F. Xiong, W. Zhou, S. Xie, H. Liu, One-step separation of high-purity single-chirality single-wall carbon nanotubes using sodium hyodeoxycholate, Carbon (2023), https://doi.org/10.1016/j.carbon.2023.03.012.
[29]
B. Podlesny, K.R. Hinkle, K. Hayashi, Y. Niidome, T. Shiraki, D. Janas, Highly-selective harvesting of (6,4) SWCNTs using the aqueous two-phase extraction method and nonionic surfactants, Adv. Sci. (2023), https://doi.org/10.1002/advs.202207218.
[30]
Z. Yaari, Y. Yang, E. Apfelbaum, C. Cupo, A.H. Settle, Q. Cullen, W. Cai, K. Long Roche, D.A. Levine, M. Fleisher, L. Ramanathan, M. Zheng, A. Jagota, D.A. Heller, A perception-based nanosensor platform to detect cancer biomarkers, Sci. Adv. 7(47) (2021), https://doi.org/10.1126/sciadv.abj0852eabj0852.
[31]
J.D. Harvey, P.V. Jena, H.A. Baker, G.H. Zerze, R.M. Williams, T.V. Galassi, D. Roxbury, J. Mittal, D.A. Heller, A carbon nanotube reporter of microRNA hybridization events in vivo, Nat. Biomed. Eng. 1 (4) (2017), https://doi.org/10.1038/s41551-017-0041.
[32]
E. Gerstman, A. Hendler-Neumark, V. Wulf, G. Bisker, Monitoring the formation of fibrin clots as part of the coagulation cascade using fluorescent single-walled carbon nanotubes, ACS Appl. Mater. Interfaces 15 (18) (2023) 21866-21876, https://doi.org/10.1021/acsami.3c00828.
[33]
V. Shumeiko, E. Malach, Y. Helman, Y. Paltiel, G. Bisker, Z. Hayouka, O. Shoseyov, A nanoscale optical biosensor based on peptide encapsulated SWCNTs for detection of acetic acid in the gaseous phase, Sensor. Actuator. B Chem. (2020), https://doi.org/10.1016/j.snb.2020.128832.
[34]
H.M. Dewey, A. Lamb, J. Budhathoki-Uprety, Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies, Nanoscale (2024), https://doi.org/10.1039/d4nr01892c.
[35]
F. Ernst, T. Heek, A. Setaro, R. Haag, S. Reich, Energy transfer in nanotube-perylene complexes, Adv. Funct. Mater. 22 (18) (2012) 3921-3926, https://doi.org/10.1002/adfm.201200784.
[36]
D.P. Salem, X. Gong, A.T. Liu, V.B. Koman, J. Dong, M.S. Strano, Ionic strength-mediated phase transitions of surface-adsorbed DNA on single-walled carbon nanotubes, J. Am. Chem. Soc. 139 (46) (2017) 16791-16802, https://doi.org/10.1021/jacs.7b09258.
[37]
A.J. Gillen, J. Kupis-Rozmysłowicz, C. Gigli, N. Schuergers, A.A. Boghossian, Xeno nucleic acid nanosensors for enhanced stability against ion-induced perturbations, J. Phys. Chem. Lett. 9 (15) (2018) 4336-4343, https://doi.org/10.1021/acs.jpclett.8b01879.
[38]
A.J. Gillen, A.A. Boghossian, Non-covalent methods of engineering optical sensors based on single-walled carbon nanotubes, Front. Chem. (2019), https://doi.org/10.3389/fchem.2019.00612.
[39]
M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K. L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes, Science (2002), https://doi.org/10.1126/science.1072631.
[40]
A.H. Brozena, M. Kim, L.R. Powell, Y. Wang, Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects, Nat. Rev. Chem (2019), https://doi.org/10.1038/s41570-019-0103-5.
[41]
X. He, H. Htoon, S.K. Doorn, W.H.P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin, Carbon nanotubes as emerging quantum-light sources, Nat. Mater. (2018), https://doi.org/10.1038/s41563-018-0109-2.
[42]
Y. Piao, B. Meany, L.R. Powell, N. Valley, H. Kwon, G.C. Schatz, Y. Wang, Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects, Nat. Chem. (2013), https://doi.org/10.1038/nchem.1711.
[43]
Y. Zheng, S.M. Bachilo, R.B. Weisman, Photoexcited aromatic reactants give multicolor carbon nanotube fluorescence from quantum defects, ACS Nano (2020), https://doi.org/10.1021/acsnano.9b07606.
[44]
X. Wu, M. Kim, H. Kwon, Y. Wang, Photochemical creation of fluorescent quantum defects in semiconducting carbon nanotube hosts, Angewandte Chemie Int (2017), https://doi.org/10.1002/anie.201709626.
[45]
C.F. Chiu, W.A. Saidi, V.E. Kagan, A. Star, Defect-induced near-infrared photoluminescence of single-walled carbon nanotubes treated with polyunsaturated fatty acids, J. Am. Chem. Soc. (2017), https://doi.org/10.1021/jacs.7b00390.
[46]
S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, M.S. Strano, Carbon nanotubes as optical biomedical sensors, Adv. Drug Deliv. Rev. (2013), https://doi.org/10.1016/j.addr.2013.07.015.
[47]
J.D. Harvey, H.A. Baker, M.V. Ortiz, A. Kentsis, D.A. Heller, HIV Detection via a carbon nanotube RNA sensor, ACS Sens. 4 (5) (2019) 1236-1244, https://doi.org/10.1021/acssensors.9b00025.
[48]
O.S. Kwon, H.S. Song, T.H. Park, J. Jang, Conducting nanomaterial sensor using natural receptors, Chem. Rev. 119 (1) (2018) 36-93, https://doi.org/10.1021/acs.chemrev.8b00159.
[49]
S.H. Lee, H.J. Jin, H.S. Song, S. Hong, T.H. Park, Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor, J. Biotechnol. 157 (4) (2012) 467-472, https://doi.org/10.1016/j.jbiotec.2011.09.011.
[50]
J. Yoo, D. Kim, H. Yang, M. Lee, S.-o. Kim, H.J. Ko, S. Hong, T.H. Park, Olfactory receptor-based CNT-FET sensor for the detection of DMMP as a simulant of sarin, Sensor. Actuator. B Chem. 354 (2022) 131188, https://doi.org/10.1016/j.snb.2021.131188.
[51]
V. Shumeiko, Y. Paltiel, G. Bisker, Z. Hayouka, O. Shoseyov, A nanoscale paper-based near-infrared optical nose (NIRON), Biosens. Bioelectron. 172 (2021) 112763, https://doi.org/10.1016/j.bios.2020.112763.
[52]
X. Gong, S.-Y. Kwak, S.-Y. Cho, D. Lundberg, A.T. Liu, M.K. McGee, M.S. Strano, Single-molecule methane sensing using palladium-functionalized NIR fluorescent single-walled carbon nanotubes, ACS Sens. 8 (11) (2023) 4207-4215, https://doi.org/10.1021/acssensors.3c01542.
[53]
R.I. Teleanu, A.G. Niculescu, E. Roza, O. Vlad^acenco, A.M. Grumezescu, D. M. Teleanu, Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system, Int. J. Mol. Sci. 23 (11)(2022), https://doi.org/10.3390/ijms23115954.
[54]
E. Polo, S. Kruss, Nanosensors for neurotransmitters, Anal. Bioanal. Chem. 408(11) (2016) 2727-2741, https://doi.org/10.1007/s00216-015-9160-x.
[55]
D. Meyer, A. Hagemann, S. Kruss, Kinetic requirements for spatiotemporal chemical imaging with fluorescent nanosensors, ACS Nano 11 (4) (2017) 4017-4027, https://doi.org/10.1021/acsnano.7b00569.
[56]
H. Wu, T.H. Denna, J.N. Storkersen, V.A. Gerriets, Beyond a neurotransmitter: the role of serotonin in inflammation and immunity, Pharmacol. Res. 140 (2019) 100-114, https://doi.org/10.1016/j.phrs.2018.06.015.
[57]
K.S. Hettie, T.E. Glass, Turn-on near-infrared fluorescent sensor for selectively imaging serotonin, ACS Chem. Neurosci. 7 (1) (2016) 21-25, https://doi.org/10.1021/acschemneuro.5b00235.
[58]
A. Henke, Y. Kovalyova, M. Dunn, D. Dreier, N.G. Gubernator, I. Dincheva, C. Hwu, P. Šebej, M.S. Ansorge, D. Sulzer, Toward serotonin fluorescent false neurotransmitters: development of fluorescent dual serotonin and vesicular monoamine transporter substrates for visualizing serotonin neurons, ACS Chem. Neurosci. 9 (5) (2017) 925-934, https://doi.org/10.1021/acschemneuro.7b00320.
[59]
M. Dinarvand, E. Neubert, D. Meyer, G. Selvaggio, F.A. Mann, L. Erpenbeck, S. Kruss, Near-infrared imaging of serotonin release from cells with fluorescent nanosensors, Nano Lett. 19 (9) (2019) 6604-6611, https://doi.org/10.1021/acs.nanolett.9b02865.
[60]
S. Jeong, D. Yang, A.G. Beyene, J.T. Del Bonis-O'Donnell, A.M. Gest, N. Navarro, X. Sun, M.P. Landry, High-throughput evolution of near-infrared serotonin nanosensors, Sci. Adv. 5 (12) (2019) eaay3771, https://doi.org/10.1126/sciadv.aay3771.
[61]
P. Kelich, S. Jeong, N. Navarro, J. Adams, X. Sun, H. Zhao, M.P. Landry, L. Vuković, Discovery of DNA-carbon nanotube sensors for serotonin with machine learning and near-infrared fluorescence spectroscopy, ACS Nano 16 (1)(2021) 736-745, https://doi.org/10.1021/acsnano.1c08271.
[62]
S. Latif, M. Jahangeer, D.M. Razia, M. Ashiq, A. Ghaffar, M. Akram, A. El Allam, A. Bouyahya, L. Garipova, M.A. Shariati, Dopamine in Parkinson's disease, Clin. Chim. Acta 522 (2021) 114-126, https://doi.org/10.1016/j.cca.2021.08.009.
[63]
O.D. Howes, R. McCutcheon, M.J. Owen, R.M. Murray, The role of genes, stress, and dopamine in the development of schizophrenia, Biol. Psychiatry 81 (1) (2017) 9-20, https://doi.org/10.1016/j.biopsych.2016.07.014.
[64]
D.J. Nutt, A. Lingford-Hughes, D. Erritzoe, P.R. Stokes, The dopamine theory of addiction: 40 years of highs and lows, Nat. Rev. Neurosci. 16 (5) (2015) 305-312, https://doi.org/10.1038/nrn3939.
[65]
C. Liu, P. Goel, P.S. Kaeser, Spatial and temporal scales of dopamine transmission, Nat. Rev. Neurosci. 22 (6) (2021) 345-358, https://doi.org/10.1038/s41583-021-00455-7.
[66]
C. Liu, P.S. Kaeser, Mechanisms and regulation of dopamine release, Curr. Op. Neurobiol. 57 (2019) 46-53, https://doi.org/10.1016/j.conb.2019.01.001.
[67]
S. Kruss, D.P. Salem, L. Vuković, B. Lima, E. Vander Ende, E.S. Boyden, M. S. Strano,High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array, Proc. Natl. Acad. Sci. 114 (8) (2017) 1789-1794, https://doi.org/10.1073/pnas.1613541114.
[68]
A.G. Beyene, K. Delevich, J.T. Del Bonis-O'Donnell, D.J. Piekarski, W.C. Lin, A.W. Thomas, S.J. Yang, P. Kosillo, D. Yang, G.S. Prounis, Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor, Sci. Adv. 5 (7) (2019) eaaw3108, https://doi.org/10.1126/sciadv.aaw3108.
[69]
S. Elizarova, A.A. Chouaib, A. Shaib, B. Hill, F. Mann, N. Brose, S. Kruss, J.A. Daniel,A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution, Proc. Natl. Acad. Sci. 119 (22)(2022) e2202842119, https://doi.org/10.1073/pnas.2202842119.
[70]
J. Ackermann, J. Stegemann, T. Smola, E. Reger, S. Jung, A. Schmitz, S. Herbertz, L. Erpenbeck, K. Seidl, S. Kruss, High sensitivity near-infrared imaging of fluorescent nanosensors, Small 19 (14) (2023) 2206856, https://doi.org/10.1002/smll.202206856.
[71]
L. Sistemich, P. Galonska, J. Stegemann, J. Ackermann, S. Kruss, Near-infrared fluorescence lifetime imaging of biomolecules with carbon nanotubes, Angew. Chem. Int. Ed. 62 (24) (2023) e202300682, https://doi.org/10.1002/anie.202300682.
[72]
X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong, X. Chen, Ratiometric optical nanoprobes enable accurate molecular detection and imaging, Chem. Soc. Rev. 47(8) (2018) 2873-2920, https://doi.org/10.1039/c7cs00612h.
[73]
C. Ma, J.M. Mohr, G. Lauer, J.T. Metternich, K. Neutsch, T. Ziebarth, A. Reiner, S. Kruss, Ratiometric imaging of catecholamine neurotransmitters with nanosensors, Nano Lett. 24 (7) (2024) 2400-2407, https://doi.org/10.1021/acs.nanolett.3c05082.
[74]
R. Mittler, ROS are good, Trends Plant Sci. 22 (1) (2017) 11-19, https://doi.org/10.1016/j.tplants.2016.08.002.
[75]
R. Li, Z. Jia, M.A. Trush, Defining ROS in biology and medicine, Reactive Oxygen Species (Apex, NC) 1 (1) (2016) 9, https://doi.org/10.20455/ros.2016.803.
[76]
A. Rauf, A.A. Khalil, S. Awadallah, S.A. Khan,T. Abu-Izneid, M. Kamran,
H.A. Hemeg, M.S. Mubarak, A. Khalid, P. Wilairatana, Reactive oxygen species in biological systems: pathways, associated diseases, and potential inhibitors—a review, Food Sci. Nutr. 12 (2) (2024) 675-693, https://doi.org/10.1002/fsn3.3784.
[77]
J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, W. Dong, ROS and ROS-mediated cellular signaling, Oxidat, Med. Cell. Longevity 2016 (1) (2016) 4350965, https://doi.org/10.1155/2016/4350965.
[78]
X.X. Chen, X.X. Ren, L.L. Zhang, Z.J. Liu, Z.J. Hai, Mitochondria-targeted fluorescent and photoacoustic imaging of hydrogen peroxide in inflammation, Analyt. Chem. 92 (20) (2020) 14244-14250, https://doi.org/10.1021/acs.analchem.0c03506.
[79]
X. Chen, D. He, J. Shentu, S. Yang, Y. Yang, Y. Wang, R. Zhang, K. Wang, J. Qian, L. Long, Smartphone-assisted colorimetric and near-infrared ratiometric fluorescent sensor for on-spot detection of H2O2 in food samples, Chem. Eng. J. 472 (2023) 144900, https://doi.org/10.1016/j.cej.2023.144900.
[80]
J.P. Giraldo, M.P. Landry, S.Y. Kwak, R.M. Jain, M.H. Wong, N.M. Iverson, M. Ben-Naim, M.S. Strano, A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring, Small 11 (32)(2015) 3973-3984, https://doi.org/10.1002/smll.201403276.
[81]
H. Wu, R. Nißler, V. Morris, N. Herrmann, P. Hu, S.-J. Jeon, S. Kruss, J.P. Giraldo, Monitoring plant health with near infrared fluorescent H2O2 nanosensors, Nano Lett. 20 (4) (2020) 2432-2442, https://doi.org/10.1021/acs.nanolett.9b05159.
[82]
Y. Qiao, R. Zhao, M. Zhang, H. Zhang, Y. Wang, P. Hu, Phenylboronic acid derivative-modified (6,5) single-wall carbon nanotube probes for detecting glucose and hydrogen peroxide, RSC Adv. 9 (4) (2019) 2258-2267, https://doi.org/10.1039/c8ra09272a.
[83]
C. Maccallini, R. Amoroso, Preface to Nitric Oxide Modulators in Health and Disease I, MDPI, 2022, p. 6820, https://doi.org/10.3390/molecules27206820.
[84]
Z. Ouyang, M. Ma, K. Yin, N. Guo, W. Fu, W. Guo, X. Gu, An activatable fluorescent probe for imaging endogenous nitric oxide via the eNOS enzymatic pathway, Bioorg. Med. Chem. Lett. 59 (2022) 128544, https://doi.org/10.1016/.bmcl.2022.128544.
[85]
T. Ishibashi, T. Miwa, I. Shinkawa, N. Nishizawa, M. Nomura, J. Yoshida, T. Kawada, M. Nishio, Quantifying nanomolar levels of nitrite in biological samples by HPLC-Griess method: special reference to arterio-venous difference in vivo, Tohoku J. Exp. Med. 215 (1) (2008) 1-11, https://doi.org/10.1620/tjem.215.1.
[86]
E. Kilinc, M. Ozsoz, O.A. Sadik, Electrochemical detection of NO by inhibition on oxidase activity, Electroanalysis 12 (18) (2000) 1467-1471, https://doi.org/10.1002/1521-4109(200012)12:18<1467::aid-elan1467>3.0.co;2-9.
[87]
Z.W. Ulissi, F. Sen, X. Gong, S. Sen, N. Iverson, A.A. Boghossian, L.C. Godoy, G.N. Wogan, D. Mukhopadhyay, M.S. Strano, Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors, Nano Lett. 14 (8) (2014) 4887-4894, https://doi.org/10.1021/nl502338y.
[88]
J. Meier, J. Stapleton, E. Hofferber, A. Haworth, S. Kachman, N.M. Iverson, Quantification of nitric oxide concentration using single-walled carbon nanotube sensors, Nanomaterials 11 (1) (2021) 243, https://doi.org/10.3390/nano11010243.
[89]
R. Bayat, M. Bekmezci, M. Akin, I. Isik, F. Sen, Nitric oxide detection using a corona phase molecular recognition site on chiral single-walled carbon nanotubes, ACS Appl. Biomat. 6 (11) (2023) 4828-4835, https://doi.org/10.1021/acsabm.3c00573.
[90]
V. Zubkovs, N. Schuergers, B. Lambert, E. Ahunbay, A.A. Boghossian, Mediatorless, reversible optical nanosensor enabled through enzymatic pocket doping, Small 13 (42) (2017) 1701654, https://doi.org/10.1002/smll.201701654.
[91]
V. Zubkovs, H. Wang, N. Schuergers, A. Weninger, A. Glieder, S. Cattaneo, A.A. Boghossian, Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring, Nanoscale Adv. 4 (11) (2022) 2420-2427, https://doi.org/10.1039/d2na00092j.
[92]
S. Nishitani, T. Tran, A. Puglise, S. Yang, M.P. Landry, Engineered glucose oxidase-carbon nanotube conjugates for tissue-translatable glucose nanosensors, Angew. Chem. Int. Ed. 63 (8) (2023), https://doi.org/10.1002/anie.202311476.
[93]
M. Kim, C. Chen, Z. Yaari, R. Frederiksen, E. Randall, J. Wollowitz, C. Cupo, X. Wu, J. Shah, D. Worroll, Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo, Nat. Chem. Biol. 19 (12) (2023) 1448-1457, https://doi.org/10.1038/s41589-023-01364-9.
[94]
N. Sultana, H. Dewey, J. Budhathoki-Uprety, Optical detection of pH changes in artificial sweat using near-infrared fluorescent nanomaterials, Sensors Diagn 1 (6)(2022) 1189-1197, https://doi.org/10.1039/d2sd00110a.
[95]
V. Wulf, E. Bichachi, A. Hendler-Neumark, T. Massarano, A.B. Leshem, A. Lampel, G. Bisker, Multicomponent system of single-walled carbon nanotubes functionalized with a melanin-inspired material for optical detection and scavenging of metals, Adv. Funct. Mater. 32 (49) (2022) 2209688, https://doi.org/10.1002/adfm.202209688.
[96]
G. Bisker, N.A. Bakh, M.A. Lee, J. Ahn, M. Park, E.B. O'Connell, N.M. Iverson, M. S. Strano, Insulin detection using a corona phase molecular recognition site on single-walled carbon nanotubes, ACS Sens. 3 (2) (2018) 367-377, https://doi.org/10.1021/acssensors.7b00788.
[97]
M.H. Wong, J.P. Giraldo, S.-Y. Kwak, V.B. Koman, R. Sinclair, T.T.S. Lew, G. Bisker, P. Liu, M.S. Strano, Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics, Nat. Mater. 16 (2)(2017) 264-272, https://doi.org/10.1038/nmat4771.
[98]
V. Ranganathan, S. Boisjoli, M.C. DeRosa, Adsorption-desorption nano-aptasensors: fluorescent screening assays for ochratoxin A, RSC Adv. 12 (22)(2022) 13727-13739, https://doi.org/10.1039/d2ra00026a.
[99]
M.A. Lee, S. Wang, X. Jin, N.A. Bakh, F.T. Nguyen, J. Dong, K.S. Silmore, X. Gong, C. Pham, K.K. Jones, Implantable nanosensors for human steroid hormone sensing in vivo using a self-templating corona phase molecular recognition, Adv. Healthcare Mater. 9 (21) (2020) 2000429, https://doi.org/10.1002/adhm.202000429.
[100]
N.A. Bakh, X. Gong, M.A. Lee, X. Jin, V.B. Koman, M. Park, F.T. Nguyen, M. S. Strano, Transcutaneous measurement of essential vitamins using near-infrared fluorescent single-walled carbon nanotube sensors, Small 17 (31) (2021) 2100540, https://doi.org/10.1002/smll.202100540.
[101]
M.F. Ramirez, M. Honigberg, D. Wang, J.K. Parekh, K. Bielawski, P. Courchesne, M. D. Larson, D. Levy, J.M. Murabito, J.E. Ho, E.S. Lau, Protein biomarkers of early menopause and incident cardiovascular disease, J. Am. Heart Assoc. 12 (16)(2023) e028849, https://doi.org/10.1161/jaha.122.028849.
[102]
B.N. Thaddi, V.B. Dabbada, B. Ambati, E.K. Kilari, Decoding cancer insights: recent progress and strategies in proteomics for biomarker discovery, J. Protein Proteonomics (2024), https://doi.org/10.1007/s42485-023-00121-9.
[103]
R. Raghunathan, K. Turajane, L.C. Wong, Biomarkers in neurodegenerative diseases: proteomics spotlight on ALS and Parkinson's disease, Int. J. Mol. Sci. 23(16) (2022), https://doi.org/10.3390/ijms23169299.
[104]
J.L. Gross, M.J. de Azevedo, S.P. Silveiro, L.H. Canani, M.L. Caramori, T. Zelmanovitz, Diabetic nephropathy: diagnosis, prevention, and treatment, Diabetes Care (2004), https://doi.org/10.2337/diacare.28.1.164.
[105]
M.R. Weir, Microalbuminuria and cardiovascular disease, Clin. J. Am. Soc. Nephrol. (2007), https://doi.org/10.2215/cjn.03190906.
[106]
L. Jørgensen, I. Heuch, T. Jenssen, B.K. Jacobsen, Association of albuminuria and cancer incidence, J. Am. Soc. Nephrol. (2008), https://doi.org/10.1681/asn.2007060712.
[107]
J. Budhathoki-Uprety, J. Shah, J.A. Korsen, A.E. Wayne, T.V. Galassi, J.R. Cohen, J. D. Harvey, P.V. Jena, L.V. Ramanathan, E.A. Jaimes, D.A. Heller, Synthetic molecular recognition nanosensor paint for microalbuminuria, Nat. Commun. 10(1) (2019), https://doi.org/10.1038/s41467-019-11583-1.
[108]
P. Gaikwad, N. Rahman, R. Parikh, J. Crespo, Z. Cohen, R.M. Williams, Optical nanosensor passivation enables highly sensitive detection of the inflammatory cytokine interleukin-6, ACS Appl. Mater. Interfaces (2024), https://doi.org/10.1021/acsami.4c02711.
[109]
P.A. Konstantinopoulos, U.A. Matulonis, Clinical and translational advances in ovarian cancer therapy, Nat. Cancer 4 (9) (2023) 1239-1257, https://doi.org/10.1038/s43018-023-00617-9.
[110]
Y. Niidome, R. Hamano, K. Nakamura, S. Qi, S. Ito, B. Yu, Y. Nagai, N. Tanaka, T. Mori, Y. Katayama, T. Fujigaya, T. Shiraki, Near-infrared photoluminescent detection of serum albumin using single-walled carbon nanotubes locally functionalized with a long-chain fatty acid, Carbon (2023), https://doi.org/10.1016/j.carbon.2023.118533.
[111]
N.M. Bardhan, D. Ghosh, A.M. Belcher, Carbon nanotubes as in vivo bacterial probes, Nat. Commun. (2014), https://doi.org/10.1038/ncomms5918.
[112]
S.-Y. Cho, X. Jin, X. Gong, S. Yang, J. Cui, M.S. Strano, Antibody-free rapid detection of SARS-CoV-2 proteins using corona phase molecular recognition to accelerate development time, Analyt. Chem. (2021), https://doi.org/10.1021/acs.analchem.1c02889.
[113]
S. Agarwal, N.E. Kallmyer, D.X. Vang, A.V. Ramirez, M.M. Islam, A.C. Hillier, L. J. Halverson, N.F. Reuel, Single-walled carbon nanotube probes for the characterization of biofilm-degrading enzymes demonstrated against Pseudomonas aeruginosa extracellular matrices, Analyt. Chem. (2021), https://doi.org/10.1021/acs.analchem.1c03633.
[114]
D. Loewenthal, D. Kamber, G. Bisker, Monitoring the activity and inhibition of cholinesterase enzymes using single-walled carbon nanotube fluorescent sensors, Analyt. Chem. (2022), https://doi.org/10.1021/acs.analchem.2c02471.
[115]
R.M. Williams, C. Lee, D.A. Heller, A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA, ACS Sens. (2018), https://doi.org/10.1021/acssensors.8b00631.
[116]
L. Ceppi, N.M. Bardhan, Y. Na, A. Siegel, N. Rajan, R. Fruscio, M.G. Del Carmen, A. M. Belcher, M.J. Birrer, Real-time single-walled carbon nanotube-based fluorescence imaging improves survival after debulking surgery in an ovarian cancer model, ACS Nano (2019), https://doi.org/10.1021/acsnano.8b09829.
[117]
M. Kim, C. Chen, P. Wang, J.J. Mulvey, Y. Yang, C. Wun, M. Antman-Passig, H.-B. Luo, S. Cho, K. Long-Roche, L.V. Ramanathan, A. Jagota, M. Zheng, Y. Wang, D.A. Heller, Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning, Nat. Biomed. Eng. (2022), https://doi.org/10.1038/s41551-022-00860-y.
[118]
V. Shumeiko, Y. Paltiel, G. Bisker, Z. Hayouka, O. Shoseyov, A paper-based near-infrared optical biosensor for quantitative detection of protease activity using peptide-encapsulated SWCNTs, Sensors (2020), https://doi.org/10.3390/s20185247.
[119]
S. Basu, A. Hendler-Neumark, G. Bisker, Monitoring enzyme activity using near-infrared fluorescent single-walled carbon nanotubes, ACS Sens. (2024), https://doi.org/10.1021/acssensors.4c00377.
[120]
Q.-D. Zhang, Q.-Y. Duan, J. Tu, F.-G. Wu, Thrombin and thrombin-incorporated biomaterials for disease treatments, Adv. Healthcare Mater. (2023), https://doi.org/10.1002/adhm.202302209.
[121]
A.H. Kamal, A. Tefferi, R.K. Pruthi,How to interpret and pursue an abnormal prothrombin time, activated partial thromboplastin time, and bleeding time in adults, Mayo Clin. Proc. (2007), https://doi.org/10.4065/82.7.864.
[122]
S. Basu, A. Hendler-Neumark, G. Bisker, Rationally designed functionalization of single-walled carbon nanotubes for real-time monitoring of cholinesterase activity and inhibition in plasma, Small 20 (24) (2024) e2309481, https://doi.org/10.1002/smll.202309481.
[123]
D. Li, Z. Zhou, J. Sun, X. Mei, Prospects of NIR fluorescent nanosensors for green detection of SARS-CoV-2, Sensor. Actuator. B Chem. 362 (2022), https://doi.org/10.1016/j.snb.2022.131764.
[124]
R.L. Pinals, F. Ledesma, D. Yang, N. Navarro, S. Jeong, J.E. Pak, L. Kuo, Y.-C. Chuang, Y.-W. Cheng, H.-Y. Sun, M.P. Landry, Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors, Nano Lett. 21 (5)(2021) 2272-2280, https://doi.org/10.1021/acs.nanolett.1c00118.
[125]
J.T. Metternich, J.A.C. Wartmann, L. Sistemich, R. Nißler, S. Herbertz, S. Kruss, Near-infrared fluorescent biosensors based on covalent DNA anchors, J. Am. Chem. Soc. 145 (27) (2023) 14776-14783, https://doi.org/10.1021/jacs.3c03336.
[126]
E.S. Jeng, J.D. Nelson, K.L. Prather, M.S. Strano, Detection of a single nucleotide polymorphism using single-walled carbon-nanotube near-infrared fluorescence, Small 6 (1) (2010) 40-43, https://doi.org/10.1002/smll.200900944.
[127]
S.K. Gupta, C. Bang, T. Thum, Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease, Circulation. Cardiov. Genet. 3 (5)(2010) 484-488, https://doi.org/10.1161/circgenetics.110.958363.
[128]
A. Hendler-Neumark, V. Wulf, G. Bisker, Single-walled carbon nanotube sensor selection for the detection of microRNA biomarkers for acute myocardial infarction as a case study, ACS Sens. 8 (10) (2023) 3713-3722, https://doi.org/10.1021/acssensors.3c00633.
[129]
B. Lindahl, Acute coronary syndrome - the present and future role of biomarkers, Clin. Chem. Lab. Med. (2013), https://doi.org/10.1515/cclm-2013-0074.
[130]
P.V. Jena, D. Roxbury, T.V. Galassi, L. Akkari, C.P. Horoszko, D.B. Iaea, J. Budhathoki-Uprety, N. Pipalia, A.S. Haka, J.D. Harvey, J. Mittal, F.R. Maxfield, J.A. Joyce, D.A. Heller, A carbon nanotube optical reporter maps endolysosomal lipid flux, ACS Nano (2017), https://doi.org/10.1021/acsnano.7b04743.
[131]
T.V. Galassi, P.V. Jena, J. Shah, G. Ao, E. Molitor, Y. Bram, A. Frankel, J. Park, J. Jessurun, D.S. Ory, A. Haimovitz-Friedman, D. Roxbury, J. Mittal, M. Zheng, R.E. Schwartz, D.A. Heller, An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo, Sci. Transl. Med. 10 (461) (2018), https://doi.org/10.1126/scitranslmed.aar2680.
[132]
A. Kaur, M. Kumar, V. Bhalla, Enzyme-/metal-free quinoxaline assemblies: direct light-up detection of cholesterol in human serum, Chem. Comm. (2023), https://doi.org/10.1039/d2cc06357c.
[133]
B. Srestha, H.-N. Adi, B. Gili, Ratiometric normalization of near-infrared fluorescence in defect-engineered single-walled carbon nanotubes for cholesterol detection, J. Phys. Chem. Lett. (2024), https://doi.org/10.1021/acs.jpclett.4c02022.
PDF(2929 KB)

Accesses

Citations

Detail

Sections
Recommended

/