Protective effects and metabolomics analysis of dihydromyricetin on cyclophosphamide-induced hepatotoxicity in mice

Fei Teng, Haina Wang

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100063.

PDF(2760 KB)
PDF(2760 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100063. DOI: 10.1016/j.pscia.2025.100063
Research article

Protective effects and metabolomics analysis of dihydromyricetin on cyclophosphamide-induced hepatotoxicity in mice

Author information +
History +

Abstract

Cyclophosphamide (CTX) is a chemotherapeutic agent with cytotoxic and immunosuppressive activity. It is used to treat a wide variety of cancers and autoimmune diseases. However, side effects caused by its toxic metabolites, especially hepatotoxicity, limit its clinical application. The natural dihydroflavonol compound dihydromyricetin (DHM) has anticancer, anti-inflammatory, and antioxidant properties. This study aimed to evaluate the protective effects of DHM against CTX-induced hepatotoxicity in mice. Male ICR mice were pretreated with DHM (100, 200, and 400 ​mg/kg b.w.) orally before intraperitoneal injection with CTX (100 ​mg/kg b.w.) for 7 days. The mice were then sacrificed to analyze biochemical and histological parameters as well as metabolomics profiles. DHM ameliorated CTX-induced elevations in the liver index, alanine aminotransferase, aspartate transaminase, and malondialdehyde levels, and pathological changes and increased levels of glutathione and antioxidant enzymes, such as superoxide dismutase and catalase. Based on a KEGG pathway analysis of altered serum and liver metabolites, OXPHOS may play an important role in the observed protective effects. Further analysis revealed that DHM increased the activity of Na+-K+-ATPase in mice, which affected CTX-induced mitochondrial energy metabolism. To conclude, DHM protected against CTX-induced hepatotoxicity, possibly through reducing oxidative stress and regulating energy metabolism, providing a potential strategy for treatment and prevention.

Keywords

Dihydromyricetin / Cyclophosphamide / Hepatotoxicity / Metabolomics

Cite this article

Download citation ▾
Fei Teng, Haina Wang. Protective effects and metabolomics analysis of dihydromyricetin on cyclophosphamide-induced hepatotoxicity in mice. Pharmaceutical Science Advances, 2025, 3(0): 100063 https://doi.org/10.1016/j.pscia.2025.100063

References

[1]
K. Bukowski, M. Kciuk, R. Kontek, Mechanisms of multidrug resistance in cancer chemotherapy, Int. J. Mol. Sci. 21 (2020), https://doi.org/10.3390/ijms21093233.
[2]
M. Ahlmann, G. Hempel, The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy, Cancer Chemother. Pharmacol. 78 (2016) 661-671, https://doi.org/10.1007/s00280-016-3152-1.
[3]
A. Takeuchi, K. Kato, K. Akashi, M. Eto, Cyclophosphamide-induced tolerance in kidney transplantation avoids long-term immunosuppressive therapy, Int. J. Urol. 25 (2018) 112-120, https://doi.org/10.1111/iju.13474.
[4]
K.A. Teles, P. Medeiros-Souza, F.A.C. Lima, B.G. Araujo, R.A.C. Lima, Cyclophosphamide administration routine in autoimmune rheumatic diseases: a review, Rev. Bras. Reumatol. Engl. Ed 57 (2017) 596-604, https://doi.org/10.1016/j.rbre.2016.09.008.
[5]
K. Kurauchi, T. Nishikawa, E. Miyahara, Y. Okamoto, Y. Kawano, Role of metabolites of cyclophosphamide in cardiotoxicity, BMC Res. Notes 10 (2017) 406, https://doi.org/10.1186/s13104-017-2726-2.
[6]
C. Ponticelli, R. Escoli, G. Moroni, Does cyclophosphamide still play a role in glomerular diseases? Autoimmun. Rev. 17 (2018) 1022-1027, https://doi.org/10.1016/j.autrev.2018.04.007
[7]
I. Sherif, Uroprotective mechanisms of natural products against cyclophosphamide-induced urinary bladder toxicity: a comprehensive review, Acta Sci. Pol. Technol. Aliment 19 (2020) 333-346, https://doi.org/10.17306/J.AFS.0832.
[8]
J. Tong, Q.G. Mo, B.X. Ma, L.L. Ge, G. Zhou, Y.W. Wang, The protective effects of Cichorium glandulosum seed and cynarin against cyclophosphamide and its metabolite acrolein-induced hepatotoxicity in vivo and in vitro, Food Funct. 8 (2017) 209-219, https://doi.org/10.1039/c6fo01531j.
[9]
E. Ghobadi, M. Moloudizargari, M.H. Asghari, M. Abdollahi, The mechanisms of cyclophosphamide-induced testicular toxicity and the protective agents, Expert Opin. Drug Metab. Toxicol. 13 (2017) 525-536, https://doi.org/10.1080/17425255.2017.1277205.
[10]
D. Wang, H. Wang, Oxazaphosphorine bioactivation and detoxification the role of xenobiotic receptors, Acta Pharm. Sin. B 2 (2012), https://doi.org/10.1016/j.apsb.2012.02.004.
[11]
K.A. Mills, R. Chess-Williams, C. McDermott, Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde's contribution to urothelial dysfunction in vitro, Arch. Toxicol. 93 (2019) 3291-3303, https://doi.org/10.1007/s00204-019-02589-1.
[12]
J. Zhai, F. Zhang, S. Gao, L. Chen, G. Feng, J. Yin, W. Chen, Schisandra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain, J. Ethnopharmacol. 210(2018) 223-231, https://doi.org/10.1016/j.jep.2017.08.020.
[13]
S. Singh, A. Kumar, Protective effect of edaravone on cyclophosphamide induced oxidative stress and neurotoxicity in rats, Curr. Drug Saf. 14 (2019) 209-216, https://doi.org/10.2174/1574886314666190506100717.
[14]
A. Iqubal, M.K. Iqubal, S. Sharma, M.A. Ansari, A.K. Najmi, S.M. Ali, J. Ali, S.E. Haque, Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision, Life Sci. 218 (2019) 112-131, https://doi.org/10.1016/j.lfs.2018.12.018.
[15]
S. Steinbrecht, J. Kiebist, R. Konig, M Thiessen, K.U. Schmidtke, S. Kammerer, J.H. Kupper, K. Scheibner, Synthesis of cyclophosphamide metabolites by a peroxygenase from Marasmius rotula for toxicological studies on human cancer cells, Amb. Express 10 (2020) 128, https://doi.org/10.1186/s13568-020-01064-w.
[16]
Y. Wang, J. Wang, H. Xiang, P. Ding, T. Wu, G. Ji, Recent update on application of dihydromyricetin in metabolic related diseases, Biomed. Pharmacother. 148 (2022) 112771, https://doi.org/10.1016/j.biopha.2022.112771.
[17]
Z. Wang, X. Sun, Y. Feng, Y. Wang, L. Zhang, Y. Wang, Z. Fang, N.L.B. Azami, M. Sun, Q. Li, Dihydromyricetin reverses MRP2-induced multidrug resistance by preventing NF-kappaB-Nrf2 signaling in colorectal cancer cell, Phytomedicine 82(2021) 153414, https://doi.org/10.1016/j.phymed.2020.153414.
[18]
X.Y. Zhang, L.F. Wang, L.Z. Peng, X.Y. Tian, X.Y. Qiu, H. Cao, Q.H. Yang, R.F. Liao, F.C. Yan, Dihydromyricetin protects HUVECs of oxidative damage induced by sodium nitroprusside through activating PI3K/Akt/FoxO3a signalling pathway, J. Cell Mol. Med. 23 (2019) 4829-4838.
[19]
L. Chen, Z.S. Yang, Y.Z. Zhou, Y. Deng, P. Jiang, S.L. Tan, Dihydromyricetin inhibits cell proliferation, migration, invasion and promotes apoptosis via regulating miR-21 in human cholangiocarcinoma Cells, J. Cancer 11 (2020) 5689-5699, https://doi.org/10.7150/jca.45970.
[20]
X. Zeng, J. Yang, O. Hu, J. Huang, L. Ran, M. Chen, Y. Zhang, X. Zhou, J. Zhu, Q. Zhang, L. Yi, M. Mi, Dihydromyricetin ameliorates nonalcoholic fatty liver disease by improving mitochondrial respiratory capacity and redox homeostasis through modulation of SIRT3 signaling, Antioxid. Redox Signal. 30 (2019) 163-183, https://doi.org/10.1089/ars.2017.7172.
[21]
X. Zhou, L. Yi, H. Lang, J. Zhang, Q. Zhang, L. Yu, J. Zhu, M. Mi, Dihydromyricetinencapsulated liposomes inhibit exhaustive exercise-induced liver inflammation by orchestrating M1/M2 macrophage polarization, Front. Pharmacol. 13 (2022) 887263, https://doi.org/10.3389/fphar.2022.887263.
[22]
A.I. Matouk, E.M. Awad, N.F.G. El-Tahawy, A.A.K. El-Sheikh, S. Waz, Dihydromyricetin alleviates methotrexate-induced hepatotoxicity via suppressing the TLR4/NF-kappaB pathway and NLRP3 inflammasome/caspase 1 axis, Biomed. Pharmacother. 155 (2022) 113752, https://doi.org/10.1016/j.biopha.2022.113752.
[23]
S. Dong, J. Ji, L. Hu, H. Wang, Dihydromyricetin alleviates acetaminophen-induced liver injury via the regulation of transformation, lipid homeostasis, cell death and regeneration, Life Sci. 227 (2019) 20-29, https://doi.org/10.1016/j.lfs.2019.04.019.
[24]
J.R. Everett, Pharmacometabonomics: the prediction of drug effects using metabolic profiling, Handb. Exp. Pharmacol. 260 (2019) 263-299, https://doi.org/10.1007/164_2019_316.
[25]
G. Su, H. Wang, J. Bai, G. Chen, Y. Pei, A metabonomics approach to drug toxicology in liver disease and its application in traditional Chinese medicine, Curr. Drug Metab. 20 (2019) 292-300, https://doi.org/10.2174/1389200220666181231124439.
[26]
X. Gong, F. Zhang, Y. Li, C. Peng, Study on the mechanism of acute liver injury protection in Rhubarb anthraquinone by metabolomics based on UPLC-Q-TOF-MS, Front. Pharmacol. 14 (2023), https://doi.org/10.3389/fphar.2023.1141147.
[27]
S. Xu, F. Kong, Z. Sun, Y. Xi, F. Qi, J. Sun, Hepatoprotective effect and metabonomics studies of radix gentianae in rats with acute liver injury, Pharmaceut, Biol. 59 (2021) 1170-1178, https://doi.org/10.1080/13880209.2021.1969414.
[28]
H.-Y. Li, S.-Y. Huang, D.-D. Zhou, R.-G. Xiong, M. Luo, A. Saimaiti, M.-K. Han, R.-R.- Y. Gan, H.-L. Zhu, H.-B. Li, Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis, J. Adv. Res. 52 (2023) 59-72, https://doi.org/10.1016/j.jare.2023.01.008.
[29]
Y. Zhao, P. Xie, H. Fan, S. Zhao, Impairment of the mitochondrial oxidative phosphorylation system and oxidative stress in liver of crucian carp (Carassius auratus L.) exposed to microcystins, Environ. Toxicol. 29 (2014) 30-39, https://doi.org/10.1002/tox.20770.
[30]
W. Fei, J. Zhang, S. Yu, N. Yue, D. Ye, Y. Zhu, R. Tao, Y. Chen, Y. Chen, A. Li, L. Wang, Antioxidative and energy metabolism-improving effects of Maca polysaccharide on Cyclophosphamide-induced hepatotoxicity mice via metabolomic analysis and Keap1-Nrf2 pathway, Nutrients 14 (2022), https://doi.org/10.3390/nu14204264.
[31]
J. Jiang, S. Xiao, S. Yan, J. Zhang, X. Xu, The effects of sulfur fumigation processing on Panacis Quinquefolii Radix in chemical profile, immunoregulation and liver and kidney injury, J. Ethnopharmacol. 249 (2020) 112377, https://doi.org/10.1016/j.jep.2019.112377.
[32]
N.S. Younis, beta-Caryophyllene ameliorates cyclophosphamide induced cardiac injury: the association of TLR4/NFkappaB and Nrf2/HO1/NQO1 pathways, J. Cardiovasc. Dev. Dis. 9 (2022), https://doi.org/10.3390/jcdd9050133.
[33]
J. Chen, Z. Li, M. Hua, Y. Sun, Protection by ginseng saponins against cyclophosphamide-induced liver injuries in rats by induction of cytochrome P450 expression and mediation of the l-arginine/nitric oxide pathway based on metabolomics, Phytother Res. 35 (2021) 3130-3144, https://doi.org/10.1002/ptr.6951.
[34]
M.A. Ayza, B. Rajkapoor, D.Z. Wondafrash, A.H. Berhe, Protective effect of Croton macrostachyus (Euphorbiaceae) stem bark on cyclophosphamide-induced nephrotoxicity in rats, J. Exp. Pharmacol. 12 (2020) 275-283, https://doi.org/10.2147/JEP.S260731.
[35]
H. Zhang, J. Zhao, Q. Lu, B. Sun, X. Liu, C. Yang, S. Li, L. Li, S. Yi, Z. Yang, J. Xu, Luteolin improves cyclophosphamide-induced cystitis through TXNIP/NLRP3 and NF-kappaB pathways, Evid. Based Complement. Alternat. Med. 2021 (2021) 1718709, https://doi.org/10.1155/2021/1718709.
[36]
Y. Zhao, X. Liu, C. Ding, Y. Gu, W. Liu, Dihydromyricetin reverses thioacetamideinduced liver fibrosis through inhibiting NF-kappaB-mediated inflammation and TGF-beta1-regulated of PI3K/Akt signaling pathway, Front. Pharmacol. 12 (2021) 783886, https://doi.org/10.3389/fphar.2021.783886.
[37]
J. Silva, M.H. Spatz, C. Folk, A. Chang, E. Cadenas, J. Liang, D.L. Davies, Dihydromyricetin improves mitochondrial outcomes in the liver of alcohol-fed mice via the AMPK/Sirt-1/PGC-1alpha signaling axis, Alcohol 91 (2021) 1-9, https://doi.org/10.1016/j.alcohol.2020.10.002.
[38]
X. Tian, Y. Liu, H. Wang, J. Zhang, L. Xie, Y. Huo, W. Ma, H. Li, X. Chen, P. Shi, The role of miR-199b-3p in regulating Nrf2 pathway by dihydromyricetin to alleviate septic acute kidney injury, Free Radic. Res. 55 (2021) 842-852, https://doi.org/10.1080/10715762.2021.1962008.
[39]
L. Guo, K. Tan, Q. Luo, X. Bai,Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy, Bosn. J. Basic Med. Sci. 20 (2020) 372-380, https://doi.org/10.17305/bjbms.2019.4410.
[40]
Y. Kuang, X. Han, M. Xu, Y. Wang, Y. Zhao, Q. Yang, Oxaloacetate ameliorates chemical liver injury via oxidative stress reduction and enhancement of bioenergetic fluxes, Int. J. Mol. Sci. 19 (2018), https://doi.org/10.3390/ijms19061626.
[41]
V. Buko, I. Kuzmitskaya, S. Kirko, E. Belonovskaya, E. Naruta, O. Lukivskaya, A. Shlyahtun, T. Ilyich, A. Zakreska, I. Zavodnik, Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis, Physiol. Int. 106 (2019) 323-334, https://doi.org/10.1556/2060.106.2019.26.
[42]
X. He, S.-M. Liang, H.-Q. Wang, L. Tao, F.-F. Sun, Y. Wang, C. Zhang, Y.-C. Huang, D.-X. Xu, X. Chen, Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner, Toxicol. Appl. Pharmacol. 465 (2023), https://doi.org/10.1016/j.taap.2023.116452.
PDF(2760 KB)

Accesses

Citations

Detail

Sections
Recommended

/