Preparation and characterization of micellar nanoparticles using crude saponins from five Congolese plant species

Pathy B. Lokole , Nadège K. Ngombe , Dave I. Motomba , Justin B. Safari , Michel K. Mpuza , Rui W.M. Krause , Paulin K. Mutwale , Christian I. Nkanga

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100055

PDF (2557KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100055 DOI: 10.1016/j.pscia.2024.100055
Research Article
research-article

Preparation and characterization of micellar nanoparticles using crude saponins from five Congolese plant species

Author information +
History +
PDF (2557KB)

Abstract

Nanoparticles (NPs) have significantly advanced medical applications, including drug delivery, immunotherapy, vaccines, and diagnostics. This versatility is partly due to the potential of tailoring NPs from multiple sources. Notably, saponins, amphiphilic plant metabolites, have shown great promise in NP formulation. This study explored the development of micellar NPs using saponin crude fractions (SCFs) extracted from five Congolese plant species: Millettia laurentii, Penthaclethra eetveldeana, Schwenckia americana, Musa paradisiaca, and Musa sapientum. Plant materials were subjected to histological examination through optical microscopy, while phytochemical analyses by thin-layer chromatography confirmed the presence and predominance of saponins in the SCFs. We used a phthalocyanine-isoniazid hybrid (Pc-INH) as a hydrophobic probe to determine the critical micellar concentrations of SCFs and explore the feasibility of developing cost-effective saponin-based micelles (SBMs). Phytochemical screenings indicated saponins in the extracted SCF and other metabolites like flavonoids, phenolic acids, and anthocyanins. Dynamic light scattering and transmission electron microscopy analyses revealed the formation of nano-sized particles, particularly noting SBMs from P. eetveldeana with notable dimensions (157 ​nm, PDI of 0.27, and ZP of −4.01 ​mV) and spherical shape. The micelles from M. laurentii exhibited superior encapsulation efficiency for Pc-INH (55%) compared to control micelles formulated from pure saponin (33%). In vitro tests showed that M. paradisiaca SBMs have the best safety profile for red blood cells, with a 10% hemolysis rate compared to a 150% rate for bulk SCFs. However, there is a significant difference between SCFs and SBMs (p ​< ​0.0001). The release profiles of M. paradisiaca SBMs show a pH-dependent relationship, suggesting potential for stimuli-responsive drug delivery. This work lays the foundation for leveraging plant-derived crude saponins in nanotechnology, emphazising their encapsulation efficiency, controlled release potential, and biocompatibility, paving the way for the cost-effective production of high-value biomedical NPs.

Keywords

Saponins / Nanoparticles / Micelles / Secondary metabolites / Hemolysis / Drug delivery

Cite this article

Download citation ▾
Pathy B. Lokole, Nadège K. Ngombe, Dave I. Motomba, Justin B. Safari, Michel K. Mpuza, Rui W.M. Krause, Paulin K. Mutwale, Christian I. Nkanga. Preparation and characterization of micellar nanoparticles using crude saponins from five Congolese plant species. Pharmaceutical Science Advances, 2024, 2(1): 100055 DOI:10.1016/j.pscia.2024.100055

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Pathy B. Lokole: Writing - original draft, Software, Methodology, Investigation, Formal analysis, Data curation. Nadège K. Ngombe: Writing - review & editing, Visualization, Validation. Dave I. Motomba: Writing - review & editing, Visualization, Validation, Investigation, Data curation. Justin B. Safari: Writing - review & editing, Software, Methodology, Formal analysis, Data curation. Michel K. Mpuza: Writing - review & editing, Visualization, Validation, Methodology, Formal analysis, Data curation. Rui W.M. Krause: Writing - review & editing, Visualization, Validation, Supervision, Resources, Investigation, Formal analysis. Paulin K. Mutwale: Writing - review & editing, Visualization, Validation, Supervision, Methodology, Investigation, Formal analysis. Christian I. Nkanga: Writing - review & editing, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Funding acquisition, Formal analysis, Conceptualization.

Ethics approval

The ethical committee of the School of Public Health of the University of Kinshasa (Kinshasa, DR Congo) examined and approved the use of blood samples for the in vitro experiments in this study (Approval No.: ESP/CE/27B/2024).

Data availability

Not applicable.

Funding

This document was produced with the financial assistance of the European Union (Grant No. DCI-PANAF/2020/420-028) through the African Research Initiative for Scientific Excellence (ARISE) pilot program. ARISE is implemented by the African Academy of Sciences with support from the European Commission and the African Union Commission. The contents of this document are the sole responsibility of the authors. They can, under no circumstances, be regarded as reflecting the position of the European Union, the African Academy of Sciences, and the African Union Commission.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We sincerely acknowledge the Laboratoire d'Analyses et de Recherches en Alimentation et Nutrition (LARAN) of the University of Kinshasa, Mr Néhémie E. Bala and Messie M. Muipata for their technical support. We also thank the Rhodes University Electron Microscopy Unit (EMU), particularly Mr. M. Randal, for training and guidance with TEM sample preparation and data collection. Further, we also thank the Rhodes University Biopharmaceutics Research Group (RUBRG) for DLS analysis and data collection.

References

[1]

S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: review of recent advances and business prospects, Acta Pharm. Sin. B 5 (2015) 442-453, https://doi.org/10.1016/j.apsb.2015.07.003.

[2]

A. Dahan, J.M. Miller, The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs, AAPS J. 14 (2012) 244-251, https://doi.org/10.1208/s12248-012-9337-6.

[3]

J.A. Roberts, F. Pea, J. Lipman, The clinical relevance of plasma protein binding changes, Clin. Pharmacokinet. 52 (2013) 1-8, https://doi.org/10.1007/s40262-012-0018-5.

[4]

K.T. Savjani, A.K. Gajjar, J.K. Savjani, Drug solubility: importance and enhancement techniques, ISRN Pharm 2012 (2012) 1-10, https://doi.org/10.5402/2012/195727.

[5]

A. Rezaei, M. Fathi, S.M. Jafari, Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers, Food Hydrocoll 88 (2019) 146-162, https://doi.org/10.1016/j.foodhyd.2018.10.003.

[6]

S. Kargozar, M. Mozafari, Nanotechnology and Nanomedicine: start small, think big, Mater Today Proc 5 (2018) 15492-15500, https://doi.org/10.1016/j.matpr.2018.04.155.

[7]

R. Awasthi, B. Bhushan, G.T. Kulkarni, Concepts of nanotechnology in nanomedicine: from discovery to applications,in: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems, Elsevier, 2020, pp. 171-209, https://doi.org/10.1016/B978-0-12-820658-4.00009-1.

[8]

M. Patel, A. Solanki, M. Nasit, Comprehensive review on nanomicelles drug delivery system, The Journal of Pharmaceutical Sciences and Medicinal Research 1 (2021), https://doi.org/10.53049/tjopam.2021.v001i01.004.

[9]

N.A. Alarfaj, M.F. El-Tohamy, Applications of micelle enhancement in luminescence-based analysis, Luminescence 30 (2015) 3-11, https://doi.org/10.1002/bio.2694.

[10]

J.R. Upponi, K. Jerajani, D.K. Nagesha, P. Kulkarni, S. Sridhar, C. Ferris, V.P. Torchilin, Polymeric micelles: theranostic co-delivery system for poorly watersoluble drugs and contrast agents, Biomaterials 170 (2018) 26-36, https://doi.org/10.1016/j.biomaterials.2018.03.054.

[11]

A. Bose, D.R. Burman, B. Sikdar, P. Patra, Nanomicelles: types, properties and applications in drug delivery, IET Nanobiotechnol. 15 (2021) 19-27, https://doi.org/10.1049/nbt2.12018.

[12]

A. Nicol, R.T.K. Kwok, C. Chen, W. Zhao, M. Chen, J. Qu, B.Z. Tang, Ultrafast delivery of aggregation-induced emission nanoparticles and pure organic phosphorescent nanocrystals by saponin encapsulation, J. Am. Chem. Soc. 139 (2017) 14792-14799, https://doi.org/10.1021/jacs.7b08710.

[13]

N.N.Q. Vo, E.O. Fukushima, T. Muranaka, Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins, J. Nat. Med. 71 (2017) 50-58, https://doi.org/10.1007/s11418-016-1026-9.

[14]

Z. Dai, H. Liu, B. Wang, D. Yang, Y.Y. Zhu, H. Yan, P.F. Zhu, Y.P. Liu, H.C. Chen, Y. li Zhao, L.X. Zhao, X.D. Zhao, H.Y. Liu, X.D. Luo, Structures/cytotoxicity/ selectivity relationship of natural steroidal saponins against GSCs and primary mechanism of tribulosaponin A, Eur. J. Med. Chem. 210 (2021), https://doi.org/10.1016/j.ejmech.2020.113068.

[15]

P. Yatham, Y. Dahat, A. Khan, R. Baishya, A.K. Srivastava, D. Kumar, Saponin Stabilized Emulsion as Sustainable Drug Delivery System: Current Status and Future Prospects (2021), https://doi.org/10.1002/9781119711698.ch10.

[16]

Z. Vinarov, R. Denitsa, Z. Katev, D.Z. tcholakova Slavka, Solubilisation of hydrophobic drugs by saponins, Indian J Pharm Sci 80 (2018) 709-718, https://doi.org/10.4172/pharmaceutical-sciences.1000411.

[17]

H. Fu, Y. Huang, H. Lu, J. An, D.E. Liu, Y. Zhang, Q. Chen, H. Gao, A theranostic saponin nano-assembly based on FRET of an aggregation-induced emission photosensitizer and photon up-conversion nanoparticles, J. Mater. Chem. B 7 (2019) 5286-5290, https://doi.org/10.1039/c9tb01248f.

[18]

Y. Liao, Z. Li, Q. Zhou, M. Sheng, Q. Qu, Y. Shi, J. Yang, L. Lv, X. Dai, X. Shi, Saponin surfactants used in drug delivery systems: a new application for natural medicine components, Int J Pharm 603 (2021), https://doi.org/10.1016/j.ijpharm.2021.120709.

[19]

C.I. Nkanga, M. Roth, R.B. Walker, X.S. Noundou, R.W.M. Krause, Co-loading of isoniazid-grafted phthalocyanine-in-cyclodextrin and rifampicin in crude soybean lecithin liposomes: formulation, spectroscopic and biological characterization, J. Biomed. Nanotechnol. 16 (2020) 14-28, https://doi.org/10.1166/jbn.2020.2880.

[20]

C.I. Nkanga, R.W.M. Krause, Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release, Appl. Nanosci. 8 (2018) 1313-1323, https://doi.org/10.1007/s13204-018-0776-y.

[21]

I.K. Elaka, P.M. Kapepula, N.K. Ngombe, J.M. Mpoyi, D.M. Lukusa, M.M. Muabilwa, C.K. Gabha'Bey, C.M. Lukukula, B.N. Lukebakio, M.K. Okuna, D.M. Kialengila, P.T. Kantola, Microscopic features, antioxidant and antibacterial capacities of plants of the Congolese cosmetopoeia, raw materials of cosmeceuticals, J. Biosci. Med. (2020) 149-166, https://doi.org/10.4236/jbm.2020.89013(Irvine)08.

[22]

Y.F. Chen, C.H. Yang, M.S. Chang, Y.P. Ciou, Y.C. Huang, Foam properties and detergent abilities of the saponins from Camellia oleifera, Int. J. Mol. Sci. 11 (2010) 4417-4425, https://doi.org/10.3390/ijms11114417.

[23]

S. Aryan, A.M. Mortazavian, F. Mohammadi, V. Mahdavi, N. Moazami, S. Jazaeri, Physicochemical properties of saponin containing Acanthophyllum laxiusculum extract: example application in foam stability and qualitative parameters for malt beverage industry, J. Food Sci. Technol. 59 (2022) 1577-1587, https://doi.org/10.1007/s13197-021-05169-3.

[24]

C.H. Yang, Y.C. Huang, Y.F. Chen, M.H. Chang, Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi, J. Food Drug Anal. 18 (2010), https://doi.org/10.38212/2224-6614.2270.

[25]

N.N. Kabamba, J.M. Katalayi, J.K. Kabengele, G.N. Djoumbissi, M.J.K. Kapinga, T.M. Fundu, D.T. Tshitenge, P.D.T. Kalenda, P.M. Kapepula, Peroxidase inhibition and antioxidant activity of bulk-marketed black tea (Camellia sinensis L.) from the democratic republic of the Congo, J. Biosci. Med. 7 (2019) 66-80, https://doi.org/10.4236/jbm.2019.79007.

[26]

N. Yakubogullari, A. Cagir, E. Bedir, D. Sag, E. 14 Bedir, Bedir, Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation Through IL-1β Production 2 3 (2021), https://doi.org/10.1101/2021.07.29.454313.

[27]

L. Lv, Y. Shen, M. Li, X. Xu, M. Li, S. Guo, S. Huang, Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation, BioMed Res. Int. 2013 (2013), https://doi.org/10.1155/2013/507103.

[28]

R. Onnainty, G. Granero, Chitosan-based nanocomposites: promising materials for drug delivery applications,in: Biomedical Applications of Nanoparticles, Elsevier, 2019, pp. 375-407, https://doi.org/10.1016/B978-0-12-816506-5.00008-5.

[29]

V. Piazzini, M. D'Ambrosio, C. Luceri, L. Cinci, E. Landucci, A.R. Bilia, M.C. Bergonzi, Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin, Molecules 24 (2019), https://doi.org/10.3390/molecules24091688.

[30]

B. Jackson, D. Snowdon, Atlas of microscopy of medicinal plants, culinary herbs and spices (1990).

[31]

D. Pertuit, M. Kapundu, A.C. Mitaine-Offer, T. Miyamoto, C. Tanaka, C. Delaude, M.A. Lacaille-Dubois, Triterpenoid saponins from the stem bark of Pentaclethra eetveldeana, Nat. Prod. Commun. 14 (2019), https://doi.org/10.1177/1934578X19863947.

[32]

A.A. Kibria, Kamrunnessa, MdM. Rahman, A. Kar, Extraction and evaluation of phytochemicals from banana peels (Musa sapientum) and banana plants (Musa paradisiaca), Malaysian Journal of Halal Research 2 (2019) 22-26, https://doi.org/10.2478/mjhr-2019-0005.

[33]

P. Kamnaing, S.N.Y. Fanso Free, A.E. Nkengfack, G. Folefoc, Z.T. Fomum, An isoflavan-quinone and a flavonol from Millettia laurentii, Phytochemistry 51 (1999) 829-832, https://doi.org/10.1016/S0031-9422(99)00043-6.

[34]

D. Pertuit, A.C. Mitaine-Offer, T. Miyamoto, C. Tanaka, C. Delaude, P.S. Bellaye, B. Collin, M.A. Lacaille-Dubois, Oleanane-type glycosides isolated from the trunk barks of the Central African tree Millettia laurentii, Fitoterapia 159 (2022), https://doi.org/10.1016/j.fitote.2022.105193.

[35]

V. N’goka, S.L. Oyegue Liabagui, C. Sima Obiang, H. Begouabe, G.F. Nsonde Ntandou, R.K. Imboumy-Limoukou, J.C. Biteghe-Bi-Essone, B.S. Kumulungui, J.B. Lekana-Douki, A.A. Abena, Pentaclethra eetveldeana leaves from four Congobrazzaville regions: antioxidant capacity, anti-inflammatory activity and proportional accumulation of phytochemicals, Plants 12 (2023), https://doi.org/10.3390/plants12183271.

[36]

M. Jarzębski, P. Siejak, W. Smułek, F. Fathordoobady, Y. Guo, J. Pawlicz, T. Trzeciak, P.Ł. Kowalczewski, D.D. Kitts, A. Singh, A.P. Singh, Plant extracts containing saponins affects the stability and biological activity of hempseed oil emulsion system, Molecules 25 (2020), https://doi.org/10.3390/molecules25112696.

[37]

I. Mesgarzadeh, A.R. Akbarzadeh, R. Rahimi, Surface-active properties of solventextracted Panax ginseng saponin-based surfactants, J. Surfactants Deterg. 20 (2017) 609-614, https://doi.org/10.1007/s11743-017-1940-1.

[38]

S. Balakrishnan, S. Varughese, A.P. Deshpande, Micellar Characterisation of Saponin from Sapindus Mukorossi, 2006, pp. 262-268. www.hanser-elibrary.com.

[39]

F. Setaro, J.W.H. Wennink, P.I. Mäkinen, L. Holappa, P.N. Trohopoulos, S. Ylä- Herttuala, C.F. Van Nostrum, A. De La Escosura, T. Torres, Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers, J. Mater. Chem. B 8 (2020) 282-289, https://doi.org/10.1039/c9tb02014d.

[40]

B. Mike Motloung, K. Edward Sekhosana, M. Managa, E. Prinsloo, T. Nyokong, The photophysicochemical properties and photodynamic therapy activity of phenyldiazenyl phenoxy substituted phthalocyanines when incorporated into Pluronic® F127 micelles, Polyhedron 174 (2019), https://doi.org/10.1016/j.poly.2019.114157.

[41]

K. Matsuoka, R. Miyajima, Y. Ishida, S. Karasawa, T. Yoshimura, Aggregate formation of glycyrrhizic acid, Colloids Surf. A Physicochem. Eng. Asp. 500 (2016) 112-117, https://doi.org/10.1016/j.colsurfa.2016.04.032.

[42]

S. Mudgal, I. Keresztes, G.W. Feigenson, S.S.H. Rizvi, Controlling the taste receptor accessible structure of rebaudioside A via binding to bovine serum albumin, Food Chem. 197 (2016) 84-91, https://doi.org/10.1016/j.foodchem.2015.10.064.

[43]

M. Li, J. Lan, X. Li, M. Xin, H. Wang, F. Zhang, X. Lu, Z. Zhuang, X. Wu, Novel ultrasmall micelles based on ginsenoside Rb1: a potential nanoplatform for ocular drug delivery, Drug Deliv. 26 (2019) 481-489, https://doi.org/10.1080/10717544.2019.1600077.

[44]

A. Fattahi, M. Asgarshamsi, F. Hasanzadeh, J. Varshosaz, M. Rostami, M. Mirian, H. Sadeghi-aliabadi, Methotrexate-grafted-oligochitosan micelles as drug carriers: synthesis and biological evaluations, J. Mater. Sci. Mater. Med. 26 (2015), https://doi.org/10.1007/s10856-015-5407-5.

[45]

S.G. Verza, P.E. De Resende, S. Kaiser, L. Quirici, H.F. Teixeira, G. Gosmann, F. Ferreira, G.G. Ortega, Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy, Pharmazie 67 (2012) 288-292, https://doi.org/10.1691/ph.2012.1102.

[46]

S. Yasamineh, H.G. Kalajahi, P. Yasamineh, Y. Yazdani, O. Gholizadeh, R. Tabatabaie, H. Afkhami, F. Davodabadi, A.K. farkhad, D. Pahlevan, A. Firouzi- Amandi, K. Nejati-Koshki, M. Dadashpour, An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19, J Nanobiotechnology 20 (2022), https://doi.org/10.1186/s12951-022-01625-0.

[47]

S.K. Saxena, S.M.P. Khurana, NanoBioMedicine, in: Nanobiomedicine (Rij), Springer Singapore, 2020, pp. 3-16, https://doi.org/10.1007/978-981-32-9898-9.

[48]

M. Manaargadoo-Catin, A. Ali-Cherif, J.L. Pougnas, C. Perrin, Hemolysis by surfactants - a review, Adv. Colloid Interface Sci. 228 (2016) 1-16, https://doi.org/10.1016/j.cis.2015.10.011.

[49]

N. Amirmahani, N.O. Mahmoodi, M. Mohammadi Galangash, A. Ghavidast, Advances in nanomicelles for sustained drug delivery, J. Ind. Eng. Chem. 55 (2017) 21-34, https://doi.org/10.1016/j.jiec.2017.06.050.

[50]

Y. Wang, B. Zhao, S. Wang, Q. Liang, Y. Cai, F. Yang, G. Li, Formulation and evaluation of novel glycyrrhizic acid micelles for transdermal delivery of podophyllotoxin, Drug Deliv. 23 (2016) 1623-1635, https://doi.org/10.3109/10717544.2015.1135489.

[51]

F.H. Yang, Q. Zhang, Q.Y. Liang, S.Q. Wang, B.X. Zhao, Y.T. Wang, Y. Cai, G.F. Li, Bioavailability enhancement of paclitaxel via a novel oral drug delivery system: paclitaxel-loaded glycyrrhizic acid micelles, Molecules 20 (2015) 4337-4356, https://doi.org/10.3390/molecules20034337.

AI Summary AI Mindmap
PDF (2557KB)

275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/