Sos1 deficiency ameliorates oncogenic KRAS-mediated hematopoietic stem cell exhaustion and myeloid progenitor expansion

Maoshuo Yang , Lanlan Liu , Yaqing Miao , Yongxin Jia , Sijia Tian , Limei Wang , Fabao Liu , Xiaona You

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100053

PDF (2128KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100053 DOI: 10.1016/j.pscia.2024.100053
Research Article
research-article

Sos1 deficiency ameliorates oncogenic KRAS-mediated hematopoietic stem cell exhaustion and myeloid progenitor expansion

Author information +
History +
PDF (2128KB)

Abstract

Constitutive KRAS activating mutations are prevalent in hematopoietic malignancies. Our previous study showed that the deficiency of Sos1 prolongs the survival of KrasG12D/+ mice. However, whether Sos1 deletion ameliorates oncogenic Kras-mediated hematopoietic defects remains unknown. Here, we found that Sos1 deletion restored KrasG12D-mediated hematopoietic stem cell (HSC) and multipotent progenitor (MPP) exhaustion by maintaining quiescent HSC and MPP pools. Sos1 knockout attenuates hyperactivation of ERK signaling in KrasG12D/+ HSCs and MPPs. Additionally, the loss of Sos1 reduced the frequency and colony-forming capability of myeloid progenitors in KrasG12D/+ mice, resulting in a less severe myeloproliferative neoplasm phenotype. Moreover, Sos1 knockout prolonged the survival of KrasG12D/+ mice in a cell-autonomous manner. In general, cells with Sos1 deletion remained sensitive to MEK and JAK inhibition, suggesting that combined Sos1 inhibition and other therapies could be a promising strategy for the treatment of oncogenic KRAS-driven leukemia.

Keywords

Sos1 / Kras / Hematopoietic stem cell / Quiescent / ERK signaling

Cite this article

Download citation ▾
Maoshuo Yang, Lanlan Liu, Yaqing Miao, Yongxin Jia, Sijia Tian, Limei Wang, Fabao Liu, Xiaona You. Sos1 deficiency ameliorates oncogenic KRAS-mediated hematopoietic stem cell exhaustion and myeloid progenitor expansion. Pharmaceutical Science Advances, 2024, 2(1): 100053 DOI:10.1016/j.pscia.2024.100053

登录浏览全文

4963

注册一个新账户 忘记密码

Availability of data and material

The data generated or analyzed in this study have been included in a published article. These data will be available upon request.

Ethical approval of studies and informed consent

All animal experiments were conducted in accordance with the National Research Council's Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee at UW-Madison.) The study was approved by the Association for the Assessment and Accreditation of Laboratory Animal Care (approval no. M005328).

Funding

This work was supported by the National Nature Science Foundation of China (81673644), the Research Projects of Guangdong Provincial Bureau of Traditional Chinese Medicine (20181261), and the Science and Technology Plan (Medical and Health) Project of Huizhou (2018Y158).

CRediT authorship contribution statement

Maoshuo Yang: Writing - review & editing, Writing - original draft, Formal analysis, Data curation, Conceptualization. Lanlan Liu: Formal analysis, Data curation, Conceptualization. Yaqing Miao: Formal analysis. Yongxin Jia: Validation. Sijia Tian: Formal analysis. Limei Wang: Validation. Fabao Liu: Writing - review & editing, Validation, Supervision. Xiaona You: Writing - review & editing, Writing - original draft, Validation, Supervision, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the University of Wisconsin Carbone Comprehensive Cancer Center for the use of Shared Services (Flow Cytometry Laboratory and Animal Models Shared Resource) to complete this research.

References

[1]

J.R. Molina, A.A. Adjei, The Ras/Raf/MAPK pathway, J. Thorac. Oncol. 1 (1) (2006) 7-9, https://doi.org/10.1016/S1556-0864(15)31506-9.

[2]

J. Downward, Targeting RAS signalling pathways in cancer therapy, Nat. Rev. Cancer 3 (1) (2003) 11-22, https://doi.org/10.1038/nrc969.

[3]

H. Bolouri, J.E. Farrar, T. Triche Jr. R. E. Ries, E.L. Lim, T.A. Alonzo, et al., The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions, Nat. Med. 24 (1) (2018) 103-112, https://doi.org/10.1038/nm.4439.

[4]

S.N. Gröbner, B.C. Worst, J. Weischenfeldt, I. Buchhalter, K. Kleinheinz, V.A. Rudneva, et al., The landscape of genomic alterations across childhood cancers, Nature 555 (7696) (2018) 321-327, https://doi.org/10.1038/nature25480.

[5]

X. Ma, Y. Liu, Y. Liu, L.B. Alexandrov, M.N. Edmonson, C. Gawad, et al., Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours, Nature 555 (7696) (2018) 371-376, https://doi.org/10.1038/nature25795.

[6]

C.M. Niemeyer, C. Flotho, Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood 133 (10) (2019) 1060-1070, https://doi.org/10.1182/blood-2018-11-844688.

[7]

C.M. Niemeyer, RAS diseases in children, Haematologica 99 (11) (2014) 1653-1662, https://doi.org/10.3324/haematol.2014.114595.

[8]

F. Locatelli, C.M. Niemeyer, How I treat juvenile myelomonocytic leukemia, Blood 125 (7) (2015) 1083-1090, https://doi.org/10.1182/blood-2014-08-550483.

[9]

J. Irving, E. Matheson, L. Minto, H. Blair, M. Case, C. Halsey, et al., Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition, Blood 124 (23) (2014) 3420-3430, https://doi.org/10.1182/blood-2014-04-531871.

[10]

D. Vigil, J. Cherfils, K.L. Rossman, C.J. Der, Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 10 (12) (2010) 842-857, https://doi.org/10.1038/nrc2960.

[11]

S.M. Margarit, H. Sondermann, B.E. Hall, B. Nagar, A. Hoelz, M. Pirruccello, et al., Structural evidence for feedback activation by Ras. GTP of the Ras-specific nucleotide exchange factor SOS, Cell 112 (5) (2003) 685-695, https://doi.org/10.1016/s0092-8674(03)00149-1.

[12]

X. You, G. Kong, E.A. Ranheim, D. Yang, Y. Zhou, J. Zhang, Unique dependence on Sos1 in Kras (G12D) -induced leukemogenesis, Blood 132 (24) (2018) 2575-2579, https://doi.org/10.1182/blood-2018-09-874107.

[13]

M. Rozakis-Adcock, P. van der Geer, G. Mbamalu, T. Pawson, MAP kinase phosphorylation of mSos1 promotes dissociation of mSos1-Shc and mSos1-EGF receptor complexes, Oncogene 11 (7) (1995) 1417-1426.

[14]

X. You, F. Liu, M. Binder, A. Vedder, T. Lasho, Z. Wen, et al., Asxl 1 loss cooperates with oncogenic Nras in mice to reprogram the immune microenvironment and drive leukemic transformation, Blood 139 (7) (2022) 1066-1079, https://doi.org/10.1182/blood.2021012519.

[15]

J. Wang, Y. Liu, Z. Li, Z. Wang, L.X. Tan, M.J. Ryu, et al., Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell typedependent manner, Blood 118 (2) (2011) 368-379, https://doi.org/10.1182/blood-2010-12-326058.

[16]

G. Kong, M. Wunderlich, D. Yang, E.A. Ranheim, K.H. Young, J. Wang, et al., Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm, J. Clin. Invest. 124 (6) (2014) 2762-2773, https://doi.org/10.1172/jci74182.

[17]

J. Wang, Y. Liu, Z. Li, J. Du, M.J. Ryu, P.R. Taylor, et al., Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia, Blood 116 (26) (2010) 5991-6002, https://doi.org/10.1182/blood-2010-04-281527.

[18]

J. Du, J. Wang, G. Kong, J. Jiang, J. Zhang, Y. Liu, et al., Signaling profiling at the single-cell level identifies a distinct signaling signature in murine hematopoietic stem cells, Stem Cell. 30 (7) (2012) 1447-1454, https://doi.org/10.1002/stem.1127.

[19]

J. Du, Y. Liu, B. Meline, G. Kong, L.X. Tan, J.C. Lo, et al., Loss of CD 44 attenuates aberrant GM-CSF signaling in Kras G12D hematopoietic progenitor/precursor cells and prolongs the survival of diseased animals, Leukemia 27 (3) (2013) 754-757, https://doi.org/10.1038/leu.2012.251.

[20]

J. Zhang, J. Wang, Y. Liu, H. Sidik, K.H. Young, H.F. Lodish, et al., Oncogenic Krasinduced leukemogeneis: hematopoietic stem cells as the initial target and lineagespecific progenitors as the potential targets for final leukemic transformation, Blood 113 (6) (2009) 1304-1314, https://doi.org/10.1182/blood-2008-01-134262.

[21]

G. Kong, Y.I. Chang, A. Damnernsawad, X. You, J. Du, E.A. Ranheim, et al., Loss of wild-type Kras promotes activation of all Ras isoforms in oncogenic Kras-induced leukemogenesis, Leukemia 30 (7) (2016) 1542-1551, https://doi.org/10.1038/leu.2016.40.

[22]

S. Zhang, Y. Zhang, X. Chen, J. Xu, H. Fang, Y. Li, et al., Design and structural optimization of orally bioavailable SOS 1 inhibitors for the treatment of KRASdriven carcinoma, J. Med. Chem. 65 (23) (2022) 15856-15877, https://doi.org/10.1021/acs.jmedchem.2c01517.

[23]

K. Begovich, A. Schoolmeesters, N. Rajapakse, E. Martinez-Terroba, M. Kumar, A. Shakya, et al., Cereblon-based bifunctional degrader of SOS1, BTX-6654, targets Multiple KRAS mutations and inhibits tumor growth, Mol. Cancer Therapeut. 23 (4) (2024) 407-420, https://doi.org/10.1158/1535-7163.Mct-23-0513.

AI Summary AI Mindmap
PDF (2128KB)

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/