Novel targeted therapies in chronic myeloid leukemia

Muhammad Sameer Ashaq , Qian Zhou , Zhuoran Li , Baobing Zhao

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100052

PDF (946KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100052 DOI: 10.1016/j.pscia.2024.100052
Review Article
research-article

Novel targeted therapies in chronic myeloid leukemia

Author information +
History +
PDF (946KB)

Abstract

Chronic myeloid leukemia (CML) is the chronic proliferation of myeloid-lineage cells in hematopoietic stem cells driven by the BCR-ABL1 fusion oncoprotein. The development of tyrosine kinase inhibitors (TKIs) has revolutionized CML treatment; however, resistance and intolerance to these drugs remain key challenges. CML stem cells (CMLSCs) are the root cause of CML relapse and resistance to TKIs. This review discusses novel targeted therapeutic options targeting CMLSCs to address the abovementioned challenges. Numerous novel TKIs, such as flumatinib, vodobatinib, and olverembatinib, have shown remarkable potential against BCR-ABL1, but few, including AT9283, MK0457, and DCC-2036, are still undergoing clinical trials. Targeting CMLSCs is a fundamental therapeutic approach for the treatment of CML progression, relapse, and TKI resistance. In this review, novel agents targeting core signaling pathways and novel molecular targets in CMLSCs are highlighted. Currently, multiple approaches, such as targeting epigenetic modifications or microRNAs and altering metabolism in leukemic cells, have shown desirable effects in treating CML. Immunotherapy, autophagy inhibitors, and protein synthesis inhibitors are novel and effective therapies for the treatment of CML. Although various therapeutic strategies have provided exceptional results in the treatment of CML, the challenges of TKI resistance and CML remission or relapse remain. Therefore, current therapeutic approaches and targeted therapies have practical and clinical implications for achieving desirable outcomes.

Keywords

Chronic myeloid leukemia / Stem cells / BCR-ABL1 / Tyrosine kinase inhibitors / Targeted therapy

Cite this article

Download citation ▾
Muhammad Sameer Ashaq, Qian Zhou, Zhuoran Li, Baobing Zhao. Novel targeted therapies in chronic myeloid leukemia. Pharmaceutical Science Advances, 2024, 2(1): 100052 DOI:10.1016/j.pscia.2024.100052

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81874294); Shandong Province (grant number TSQN201812015), the Shandong University (grant number 2020QNQT007); and the Natural Science Foundation of Shandong Province (grant number ZR2022LSW027).

CRediT authorship contribution statement

Muhammad Sameer Ashaq: Writing - original draft. Qian Zhou: Writing - original draft. Zhuoran Li: Writing - original draft. Baobing Zhao: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Y. Ochi, Genetic landscape of chronic myeloid leukemia, Int. J. Hematol. 117 (2023) 30-36, https://doi.org/10.1007/s12185-022-03510-w.

[2]

A. Fernandes, N. Shanmuganathan, S. Branford, Genomic mechanisms influencing outcome in chronic myeloid leukemia, Cancers 14 (2022) 620, https://doi.org/10.3390/cancers14030620.

[3]

J. Filipek-Gorzała, P. Kwiecińska, A. Szade, K. Szade, The dark side of stemness-the role of hematopoietic stem cells in development of blood malignancies, Front. Oncol. 14 (2024) 1308709, https://doi.org/10.3389/fonc.2024.1308709.

[4]

A.E.G. Osman, M.W. Deininger, Chronic myeloid leukemia: modern therapies, current challenges and future directions, Blood Rev. 49 (2021) 100825, https://doi.org/10.1016/j.blre.2021.100825.

[5]

S. Hukku, H.A. Baboo, S. Venkataratnam, M.S. Vidyasagar, N.L. Patel, Splenic irradiation in chronic myeloid leukemia, Acta Radiologica Oncol 22 (1983) 9-12, https://doi.org/10.3109/02841868309134332.

[6]

E. Jabbour, H. Kantarjian, Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring 95 (2020) 691-709, https://doi.org/10.1002/ajh.25792.

[7]

J.J. Ng, S.T. Ong, Therapy resistance and disease progression in CML: mechanistic links and therapeutic strategies, Curr. Hematol. Malig. Rep 17 (2022) 181-197, https://doi.org/10.1007/s11899-022-00679-z.

[8]

S. Azizidoost, A. Nasrolahi, M. Sheykhi-Sabzehpoush, A. Anbiyaiee, S.E. Khoshnam, M. Farzaneh, S. Uddin, Signaling pathways governing the behaviors of leukemia stem cells, Gene. Dis 11 (2024) 830-846, https://doi.org/10.1016/j.gendis.2023.01.008.

[9]

G. Poudel, M.G. Tolland, T.P. Hughes, I.S. Pagani, Mechanisms of resistance and implications for treatment strategies in chronic myeloid leukaemia, Cancers 14 (2022) 3300, https://doi.org/10.3390/cancers14143300.

[10]

H. Mojtahedi, N. Yazdanpanah, N. Rezaei, Chronic myeloid leukemia stem cells: targeting therapeutic implications, Stem Cell Res. Ther. 12 (2021) 603, https://doi.org/10.1186/s13287-021-02659-1.

[11]

M. Houshmand, G. Simonetti, P. Circosta, V. Gaidano, A. Cignetti, G. Martinelli, G. Saglio, R.P. Gale, Chronic myeloid leukemia stem cells, Leukemia 33 (2019) 1543-1556, https://doi.org/10.1038/s41375-019-0490-0.

[12]

B. Nagar, W.G. Bornmann, P. Pellicena, T. Schindler, D.R. Veach, W.T. Miller, B. Clarkson, J. Kuriyan, Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571), Cancer Res. 62 (2002) 4236-4243, https://doi.org/10.3410/f.1008668.109812.

[13]

T.P. Braun, C.A. Eide, B.J. Druker, Response and resistance to BCR-ABL1-targeted therapies, Cancer Cell 37 (2020) 530-542, https://doi.org/10.1016/j.ccell.2020.03.006.

[14]

N. Held, E.L. Atallah, Real-world Management of CML: outcomes and treatment patterns, Curr. Hematol. Malig. Rep 18 (2023) 167-175, https://doi.org/10.1007/s11899-023-00703-w.

[15]

X.-L. Xu, Y.-J. Cao, W. Zhang, G.-W. Rao, Research status, synthesis and clinical application of recently marketed and clinical BCR-ABL inhibitors, Curr. Med. Chem. 29 (2022) 3050-3078, https://doi.org/10.2174/0929867328666211012093423.

[16]

B. Jiang, J. Qi, M. Sun, W. Zheng, Y. Wei, J. Wang, F. Zhang, Pharmacokinetics of single- and multiple-dose flumatinib in patients with chronic phase chronic myeloid leukemia, Front. Oncol. 13 (2023) 1101738, https://doi.org/10.3389/fonc.2023.1101738.

[17]

Z. Li, L. Meng, Y. Zhang, H. Zhu, J. Cui, A. Sun, Y. Hu, J. Jin, H. Jiang, X. Zhang, Frontline flumatinib versus imatinib in patients with chronic myeloid leukemia in chronic phase: results from the China randomized phase III study, Am. Soc. Clin, Oncol. 10 (2019) 454-461, https://doi.org/10.1200/JCO.2019.37.15_suppl.7004.

[18]

Q. Jiang, X. Huang, Z. Chen, Q. Niu, D. Shi, Z. Li, Y. Hou, Y. Hu, W. Li, X. Liu, Novel BCR-ABL1 tyrosine kinase inhibitor (TKI) HQP1351 (olverembatinib) is efficacious and well tolerated in patients with T315I-mutated chronic myeloid leukemia (CML): results of pivotal (phase II) trials, Blood 136 (2020) 50-51, https://doi.org/10.1182/blood-2020-142142.

[19]

Q. Jiang, Z. Li, Y. Qin, W. Li, N. Xu, B. Liu, Y. Zhang, L. Meng, H. Zhu, X. Du, S. Chen, Y. Liang, Y. Hu, X. Liu, Y. Song, L. Men, Z. Chen, Q. Niu, H. Wang, M. Lu, D. Yang, Y. Zhai, X. Huang, Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: results of an open-label, multicenter phase 1/2 trial, J. Hematol. Oncol. 15 (2022) 113, https://doi.org/10.1186/s13045-022-01334-z.

[20]

J.E. Cortes, D.-W. Kim, F.E. Nicolini, T. Saikia, A. Charbonnier, J.F. Apperley, K. Rathnam, M.W. Deininger, H. De Lavallade, N. Khattry, Phase 1 trial of K0706, a novel oral BCR-ABL1 tyrosine kinase inhibitor (TKI): in patients with chronic myelogenous leukemia (CML) and Phildelphia positive acute lymphoblastic leukemia (Pht ALL) failing≥3 prior TKI therapies: initial safety and efficacy, Blood 134 (2019) 4158, https://doi.org/10.1182/blood-2019-129751.

[21]

J.E. Cortes, T. Saikia, D.-W. Kim, Y. Alvarado, F.E. Nicolini, N. Khattry, K. Rathnam, J. Apperley, M.W. Deininger, H. de Lavallade, Phase 1 trial of vodobatinib, a novel oral BCR-ABL1 tyrosine kinase inhibitor (TKI): activity in CML chronic phase patients failing TKI therapies including ponatinib, Blood 136 (2020) 51-52, https://doi.org/10.1182/blood-2020-139847.

[22]

E.S. Ivanova, V.V. Tatarskiy, M.A. Yastrebova, A.I. Khamidullina, A.V. Shunaev, A.A. Kalinina, A.A. Zeifman, F.N. Novikov, Y.V. Dutikova, G.G. Chilov, PF-114, a novel selective inhibitor of BCR-ABL tyrosine kinase, is a potent inducer of apoptosis in chronic myelogenous leukemia cells, Int. J. Oncol. 55 (2019) 289-297, https://doi.org/10.3892/ijo.2019.4801.

[23]

F. Rossari, F. Minutolo, E. Orciuolo, Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy, J. Hematol. Oncol. 11 (2018) 1-14, https://doi.org/10.1186/s13045-018-0624-2.

[24]

A.G. Turkina, O. Vinogradova, E. Lomaia, E. Shatokhina, O.A. Shukhov, E.Y. Chelysheva, D. Shikhbabaeva, I. Nemchenko, A. Petrova, A. Bykova, PF-114: a 4th generation tyrosine kinase-inhibitor for chronic phase chronic myeloid leukaemia including BCRABL1T315I, Blood 134 (2019) 1638, https://doi.org/10.1182/blood-2019-127951.

[25]

L. Sun, P.-C. Yang, L. Luan, J.-F. Sun, Y.-T. Wang, Harmonizing the craft of crafting clinically endorsed small-molecule BCR-ABL tyrosine kinase inhibitors for the treatment of hematological malignancies, Eur, J. Pharm. Sci. 106678 (2023), https://doi.org/10.1016/j.ejps.2023.106678.

[26]

J. Cortes, M. Talpaz, H.P. Smith, D.S. Snyder, J. Khoury, K.N. Bhalla, J. Pinilla- Ibarz, R. Larson, D. Mitchell, S.C. Wise, T.J. Rutkoski, B.D. Smith, D.L. Flynn, H.M. Kantarjian, O. Rosen, R.A. Van Etten, Phase 1 dose-finding study of rebastinib (DCC-2036) in patients with relapsed chronic myeloid leukemia and acute myeloid leukemia, Haematologica 102 (2017) 519-528, https://doi.org/10.3324/haematol.2016.152710.

[27]

S. Balabanov, A. Gontarewicz, G. Keller, L. Raddrizzani, M. Braig, e19164, Abcg2 overexpression represents a novel mechanism for acquired resistance 6 (2011), https://doi.org/10.1371/journal.pone.0019164.

[28]

H.-T. Arkenau, R. Plummer, L. Molife, D. Olmos, T. Yap, M. Squires, S. Lewis, V. Lock, M. Yule, J. Lyons, A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies, Ann. Oncol. 23 (2012) 1307-1313, https://doi.org/10.1093/annonc/mdr451.

[29]

N. Mukaida, Y. Tanabe, T. Baba, Cancer non-stem cells as a potent regulator of tumor microenvironment: a lesson from chronic myeloid leukemia, Mol. Biomed 2 (2021) 1-16, https://doi.org/10.1186/s43556-021-00030-7.

[30]

J. Antoszewska-Smith, E. Pawlowska, J. Błasiak, Reactive oxygen species in BCRABL1- expressing cells-relevance to chronic myeloid leukemia, Acta Biochim. Pol. 64 (2017) 1-10, https://doi.org/10.18388/abp.2016_1396.

[31]

A. Wu, K.A. Turner, A. Woolfson, X. Jiang, The Hedgehog pathway as a therapeutic target in chronic myeloid leukemia, Pharmaceutics 15 (2023) 958, https://doi.org/10.3390/pharmaceutics15030958.

[32]

W. Manni, W. Min, Signaling pathways in the regulation of cancer stem cells and associated targeted therapy, MedComm 3 (2022) e176, https://doi.org/10.1002/mco2.176.

[33]

A. Abraham, S. Qiu, B.K. Chacko, H. Li, A. Paterson, J. He, P. Agarwal, M. Shah, R. Welner, V.M. Darley-Usmar, SIRT 1 regulates metabolism and leukemogenic potential in CML stem cells, J. Clin. Invest. 129 (2019) 2685-2701, https://doi.org/10.1172/JCI127080.

[34]

A. Glaviano, A.S. Foo, H.Y. Lam, K.C. Yap, W. Jacot, R.H. Jones, H. Eng, M.G. Nair, P. Makvandi, B. Geoerger, PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer, Mol. Cancer 22 (2023) 138, https://doi.org/10.1186/s12943-023-01827-6.

[35]

M. Ebrahimi, E. Nourbakhsh, A.Z. Hazara, A. Mirzaei, S. Shafieyari, A. Salehi, M. Hoseinzadeh, Z. Payandeh, G. Barati, PI3K/Akt/mTOR signaling pathway in cancer stem cells, Pathol. Res. Pract, 237 154010 (2022), https://doi.org/10.1016/j.prp.2022.154010.

[36]

G. Biondani, J.-F. Peyron, Metformin, an anti-diabetic drug to target leukemia, Front. Endocrinol. 9 (2018) 446, https://doi.org/10.3389/fendo.2018.00446.

[37]

R. Shi, J. Lin, Y. Gong, T. Yan, F. Shi, X. Yang, X. Liu, D. Naren, The antileukemia effect of metformin in the Philadelphia chromosome-positive leukemia cell line and patient primary leukemia cell, Anti Cancer Drugs 26 (2015) 913-922, https://doi.org/10.1097/cad.0000000000000266.

[38]

F. Erdogan, T.B. Radu, A. Orlova, A.K. Qadree, E.D. de Araujo, J. Israelian, P. Valent, S.M. Mustjoki, M. Herling, R. Moriggl, JAK-STAT core cancer pathway: an integrative cancer interactome analysis, J. Cell Mol. Med. 26 (2022) 2049-2062, https://doi.org/10.1111/jcmm.17228.

[39]

B. Zhang, L. Li, Y. Ho, M. Li, G. Marcucci, W. Tong, R. Bhatia, Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells, J. Clin. Invest. 126 (2016) 975-991, https://doi.org/10.1172/JCI79196.

[40]

R. Bhatia, Novel approaches to therapy in CML, Hematology 2014, Am. Soc. Hematol, Education Program Book 2017 (2017) 115-120, https://doi.org/10.1182/asheducation-2017.1.115.

[41]

M. Massimino, S. Stella, E. Tirró, C. Romano, M.S. Pennisi, A. Puma, L. Manzella, A. Zanghì, F. Stagno, F. Di Raimondo, Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia, Mol. Cancer 17 (2018) 1-15, https://doi.org/10.1186/s12943-018-0805-1.

[42]

C. Zhao, J. Blum, A. Chen, H.Y. Kwon, S.H. Jung, J.M. Cook, A. Lagoo, T. Reya, Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo, Cancer Cell 12 (2007) 528-541, https://doi.org/10.1016/j.ccr.2007.11.003.

[43]

H. Zhou, P.Y. Mak, H. Mu, D.H. Mak, Z. Zeng, J. Cortes, Q. Liu, M. Andreeff, B.Z. Carter, Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo, Leukemia 31 (2017) 2065-2074, https://doi.org/10.1038/leu.2017.87.

[44]

K. Rothe, A. Babaian, N. Nakamichi, M. Chen, S.C. Chafe, A. Watanabe, D.L. Forrest, D.L. Mager, C.J. Eaves, S. Dedhar, Integrin-linked kinase mediates therapeutic resistance of quiescent CML stem cells to tyrosine kinase inhibitors, Cell Stem Cell 27 (2020) 110-124, https://doi.org/10.1016/j.stem.2020.04.005.

[45]

P. Agarwal, B. Zhang, Y. Ho, A. Cook, L. Li, Y. Wang, M.E. Mclaughlin, R. Bhatia, Inhibition of CML stem cell renewal by the porcupine inhibitor WNT974, Blood 126 (2015) 54, https://doi.org/10.1182/blood.V126.23.54.54.

[46]

P. Agarwal, B. Zhang, Y. Ho, A. Cook, L. Li, F.M. Mikhail, Y. Wang, M.E. McLaughlin, R. Bhatia, Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI, Blood 129 (2017) 1008-1020, https://doi.org/10.1182/blood-2016-05-714089.

[47]

K. Mattes, M. Gerritsen, H. Folkerts, M. Geugien, F.A. van den Heuvel, A.F. Svendsen, G. Yi, J.H. Martens, E. Vellenga, CD34t acute myeloid leukemia cells with low levels of reactive oxygen species show increased expression of stemness genes and can be targeted by the BCL2 inhibitor venetoclax, Haematologica 105 (2020) e399-e403, https://doi.org/10.3324/haematol.2019.229997.

[48]

B.Z. Carter, P.Y. Mak, H. Mu, H. Zhou, D.H. Mak, W. Schober, J.D. Leverson, B. Zhang, R. Bhatia, X. Huang, Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells, Sci. Transl. Med. 8 (2016) 355ra117, https://doi.org/10.1016/j.clml.2015.07.070.

[49]

N. Javidi-Sharifi, G. Hobbs, Future directions in chronic phase CML treatment, Curr, Hematol. Malig. Rep (2021) 1-9, https://doi.org/10.1007/s11899-021-00658-w.

[50]

S. Lim, T.Y. Saw, M. Zhang, M.R. Janes, K. Nacro, J. Hill, A.Q. Lim, C.-T. Chang, D.A. Fruman, D.A. Rizzieri, S.Y. Tan, H. Fan, C.T.H. Chuah, S.T. Ong, Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function, Proc. Natl. Acad. Sci. USA 110 (2013) E2298-E2307, https://doi.org/10.1073/pnas.1301838110.

[51]

M. Chen, A.G. Turhan, H. Ding, Q. Lin, K. Meng, X. Jiang, Targeting BCR-ABLt stem/progenitor cells and BCR-ABL-T315I mutant cells by effective inhibition of the BCR-ABL-Tyr177-GRB2 complex, Oncotarget 8 (2017) 43662-43677, https://doi.org/10.18632/oncotarget.18216.

[52]

A. Chorzalska, N. Ahsan, R.S.P. Rao, K. Roder, X. Yu, J. Morgan, A. Tepper, S. Hines, P. Zhang, D.O. Treaba, Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-κB pathways in a model of chronic myeloid leukemia, Mol. Oncol. 12 (2018) 630-647, https://doi.org/10.1002/1878-0261.12186.

[53]

G.L. Semenza, Breakthrough science: hypoxia-inducible factors, oxygen sensing, and disorders of hematopoiesis, Blood 139 (2022) 2441-2449, https://doi.org/10.1182/blood.2021011043.

[54]

P.E. Westerweel, P.A. Te Boekhorst, M.-D. Levin, J.J. Cornelissen, New approaches and treatment combinations for the management of chronic myeloid leukemia, Front. Oncol. 9 (2019) 665, https://doi.org/10.3389/fonc.2019.00665.

[55]

S. Prost, F. Relouzat, M. Spentchian, Y. Ouzegdouh, J. Saliba, G. Massonnet, J.-J.- P. Beressi, E. Verhoeyen, V. Raggueneau, B. Maneglier, Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists, Nature 525 (2015) 380-383, https://doi.org/10.1038/nature15248.

[56]

B. Yousefi, N. Samadi, B. Baradaran, V. Shafiei-Irannejad, N. Zarghami, Peroxisome proliferator-activated receptor ligands and their role in chronic myeloid leukemia: therapeutic strategies, Chem. Biol. Drug Design 88 (2016) 17-25, https://doi.org/10.1111/cbdd.12737.

[57]

R, d. C. C. Melo, K. P. V. Ferro, A. d. S. S. Duarte, S. T. Olalla Saad, CXCR7 participates in CXCL12-mediated migration and homing of leukemic and normal hematopoietic cells, Stem Cell Res. Ther. 9 (2018) 1-5, https://doi.org/10.1186/s13287-017-0765-1.

[58]

E.L. Weisberg, M. Sattler, A.K. Azab, D. Eulberg, A. Kruschinski, P.W. Manley, R. Stone, J.D. Griffin, Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition, Oncotarget 8 (2017) 109973, https://doi.org/10.18632/oncotarget.22409.

[59]

H. Gill, E. Lee, P. Mo, In the Pipeline:Emerging Therapy for CML, Pathogenesis and Treatment of Leukemia, Springer, 2023, pp. 663-684, https://doi.org/10.1007/978-981-99-3810-0_52.

[60]

F. Li, B. He, X. Ma, S. Yu, R.R. Bhave, S.R. Lentz, K. Tan, M.L. Guzman, C. Zhao, H.-H.- H. Xue, Prostaglandin E1 and its analog misoprostol inhibit human CML stem cell self-renewal via EP4 receptor activation and repression of AP-1, Cell Stem Cell 21 (2017) 359-373, https://doi.org/10.1016/j.stem.2017.08.001.

[61]

R. Mitchell, M. Copland, Defining niche interactions to target chronic myeloid leukemia stem cells, Haematologica 105 (2020) 2-4, https://doi.org/10.3324/haematol.2019.234898.

[62]

D.S. Krause, K. Lazarides, U.H. von Andrian, R.A. Van Etten, Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells, Nat, Med 12 (2006) 1175-1180, https://doi.org/10.1038/nm1489.

[63]

P.S. Godavarthy, R. Kumar, S.C. Herkt, R.S. Pereira, N. Hayduk, E.S. Weissenberger, D. Aggoune, Y. Manavski, T. Lucas, K.-T. Pan, The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the Eselectin- SCL/TAL1-CD44 axis, Haematologica 105 (2020) 136-147, https://doi.org/10.3324/haematol.2018.212365.

[64]

Y. Zhao, C. Xing, Y. Deng, C. Ye, H. Peng, HIF-1α signaling: essential roles in tumorigenesis and implications in targeted therapies, Gene Dis 11 (2024) 234-251, https://doi.org/10.1016/j.gendis.2023.02.039.

[65]

G. Cheloni, M. Tanturli, I. Tusa, N. Ho DeSouza, Y. Shan, A. Gozzini, F. Mazurier, E. Rovida, S. Li, P. Dello Sbarba, Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine, Blood 130 (2017) 655-665, https://doi.org/10.1182/blood-2016-10-745588.

[66]

R. Pippa, M.D. Odero, The role of MYC and PP2A in the initiation and progression of myeloid leukemias, Cells 9 (2020) 544, https://doi.org/10.3390/cells9030544.

[67]

R. Ghaffarnia, A. Nasrollahzadeh, D. Bashash, N. Nasrollahzadeh, S.A. Mousavi, S.H. Ghaffari, Inhibition of c-Myc using 10058-F4 induces anti-tumor effects in ovarian cancer cells via regulation of FOXO target genes, Eur, J. Pharmacol. 908 (2021) 174345, https://doi.org/10.1016/j.ejphar.2021.174345.

[68]

A. Agarwal, R.J. MacKenzie, R. Pippa, C.A. Eide, J. Oddo, J.W. Tyner, R. Sears, M.P. Vitek, M.D. Odero, D.J. Christensen, Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia, Clin. Cancer Res. 20 (2014) 2092-2103, https://doi.org/10.1158/1078-0432.ccr-13-2575.

[69]

G. Carra, A. Cartella, B. Maffeo, A. Morotti, Strategies for targeting chronic myeloid leukaemia stem cells, Blood Lymphat, Cancer: Targets Ther (2019) 45-52, https://doi.org/10.2147/blctt.s228815.

[70]

M. Konopleva, G. Martinelli, N. Daver, C. Papayannidis, A. Wei, B. Higgins, M. Ott, J. Mascarenhas, M. Andreeff, MDM2 inhibition: an important step forward in cancer therapy, Leukemia 34 (2020) 2858-2874, https://doi.org/10.1038/s41375-020-0949-z.

[71]

S. Grant, Recruiting TP53 to target chronic myeloid leukemia stem cells, Haematologica 105 (2020) 1172-1174, https://doi.org/10.3324/haematol.2019.246306.

[72]

H. Zhu, H. Gao, Y. Ji, Q. Zhou, Z. Du, L. Tian, Y. Jiang, K. Yao, Z. Zhou, Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials, J. Hematol. Oncol. 15 (2022) 91, https://doi.org/10.1186/s13045-022-01314-3.

[73]

L.F. Peterson, M.-C. Lo, Y. Liu, D. Giannola, E. Mitrikeska, N.J. Donato, C.N. Johnson, S. Wang, J. Mercer, M. Talpaz, Induction of p53 suppresses chronic myeloid leukemia, Leuk. Lymphoma 58 (2017) 2165-2175, https://doi.org/10.1080/10428194.2016.1272682.

[74]

R.N. Mobaraki, M. Karimi, F. Alikarami, E. Farhadi, A. Amini, D. Bashash, M. Paridar, P. Kokhaei, M.R. Rezvani, A. Kazemi, RITA induces apoptosis in p53- null K562 leukemia cells by inhibiting STAT5, Akt, and NF-κB signaling pathways, Anti Cancer Drugs 29 (2018) 847-853, https://doi.org/10.1097/cad.0000000000000651.

[75]

R. Warfvinge, L. Geironson, M.N. Sommarin, S. Lang, C. Karlsson, T. Roschupkina, L. Stenke, J. Stentoft, U. Olsson-Strömberg, H. Hjorth-Hansen, Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML, Blood 129 (2017) 2384-2394, https://doi.org/10.1182/blood-2016-07-728873.

[76]

W. Warda, F. Larosa, M. Neto Rocha, R. Trad, E. Deconinck, Z. Fajloun, C. Faure, D. Caillot, M. Moldovan, S. Valmary-Degano, CML hematopoietic stem cells expressing IL1RAP can be targeted by chimeric antigen receptor-engineered T cells, Cancer Res. 79 (3) (2019) 663-675, https://doi.org/10.1158/0008-5472.can-18-1078.

[77]

M. Järås, P. Johnels, N. Hansen, H. Ågerstam, P. Tsapogas, M. Rissler, C. Lassen, T. Olofsson, O.W. Bjerrum, J. Richter, Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein, Proc. Natl. Acad. Sci. 107 (2010) 16280-16285, https://doi.org/10.1073/pnas.1004408107.

[78]

N. Landberg, S. von Palffy, M. Askmyr, H. Lilljebjörn, C. Sandén, M. Rissler, S. Mustjoki, H. Hjorth-Hansen, J. Richter, H. Ågerstam, M. Järås, T. Fioretos, CD 36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting, Haematologica 103 (2018) 447-455, https://doi.org/10.3324/haematol.2017.169946.

[79]

H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin, M. Gasparetto, B. Stevens, S. Pei, M. Balys, J.M. Ashton, Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche, Cell Stem Cell 19 (2016) 23-37, https://doi.org/10.1016/j.stem.2016.06.001.

[80]

C.I. Kobayashi, K. Takubo, H. Kobayashi, A. Nakamura-Ishizu, H. Honda, K. Kataoka, K. Kumano, H. Akiyama, T. Sudo, M. Kurokawa, The IL-2/CD25 axis maintains distinct subsets of chronic myeloid leukemia-initiating cells, Blood 123 (2014) 2540-2549, https://doi.org/10.1182/blood-2013-07-517847.

[81]

I. Sadovnik, A. Hoelbl-Kovacic, H. Herrmann, G. Eisenwort, S. Cerny-Reiterer, W. Warsch, G. Hoermann, G. Greiner, K. Blatt, B. Peter, Identification of CD25 as STAT5-dependent growth regulator of leukemic stem cells in Pht CML, Clin. Cancer Res. 22 (2016) 2051-2061, https://doi.org/10.1158/1078-0432.ccr-15-0767.

[82]

M. Lernoux, M. Schnekenburger, H. Losson, K. Vermeulen, H. Hahn, D. Gérard, J.-J.- Y. Lee, A. Mazumder, M. Ahamed, C. Christov, Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCRABL/ MYC-signaling: effect on imatinib resistance and stem cells, Clin. Epigenet. 12 (2020) 1-26, https://doi.org/10.1186/s13148-020-00839-z.

[83]

M. Lernoux, M. Schnekenburger, H. Losson, K. Vermeulen, H. Hahn, D. Gérard, J.-J.- Y. Lee, A. Mazumder, M. Ahamed, C. Christov, Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCRABL/ MYC-signaling: effect on imatinib resistance and stem cells, Clin. Epigenet. 12 (2020) 1-26, https://doi.org/10.1186/s13148-020-00839-z.

[84]

O.A. Bamodu, K.-T. Kuo, L.-P. Yuan, W.-H. Cheng, W.-H. Lee, Y.-S. Ho, T.-Y. Chao, C.-T. Yeh, HDAC inhibitor suppresses proliferation and tumorigenicity of drugresistant chronic myeloid leukemia stem cells through regulation of hsa-miR-196a targeting BCR/ABL1, Exp. Cell Res. 370 (2018) 519-530, https://doi.org/10.1016/j.yexcr.2018.07.017.

[85]

B. He, Q. Wang, X. Liu, Z. Lu, J. Han, C. Pan, B.Z. Carter, Q. Liu, N. Xu, H. Zhou, A novel HDAC inhibitor chidamide combined with imatinib synergistically targets tyrosine kinase inhibitor resistant chronic myeloid leukemia cells, Biomed. Pharmacother. 129 (2020) 110390, https://doi.org/10.1016/j.biopha.2020.110390.

[86]

J. Rinke, A. Chase, N.C. Cross, A. Hochhaus, T. Ernst, EZH 2 in myeloid malignancies, Cells 9 (2020) 1639, https://doi.org/10.3390/cells9071639.

[87]

H. Xie, C. Peng, J. Huang, B.E. Li, W. Kim, E.C. Smith, Y. Fujiwara, J. Qi, G. Cheloni, P.P. Das, Chronic myelogenous leukemia-initiating cells require Polycomb group protein EZH2, Cancer Discov. 6 (2016) 1237-1247, https://doi.org/10.1158/2159-8290.cd-15-1439.

[88]

B. Peter, G. Eisenwort, A. Keller, K. Bauer, D. Berger, I. Sadovnik, G. Stefanzl, G. Hoermann, D. Wolf, Z. Racil, BRD 4 degradation is a potent approach to block MYC expression and to overcome multiple forms of stem cell resistance in Pht CML, Blood 132 (2018) 1722, https://doi.org/10.1182/blood-2018-99-111126.

[89]

K.T. Siu, J. Ramachandran, A.J. Yee, H. Eda, L. Santo, C. Panaroni, J.A. Mertz, R.J. Sims Iii, M.R. Cooper, N. Raje, Preclinical activity of CPI-0610, a novel smallmolecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma, Leukemia 31 (2017) 1760-1769, https://doi.org/10.1038/leu.2016.355.

[90]

H.H. Wei, X.J. Fan, Y. Hu, X.X. Tian, M. Guo, M.W. Mao, Z.Y. Fang, P. Wu, S.X. Gao, C. Peng, Y. Yang, Z. Wang, A systematic survey of PRMT interactomes reveals the key roles of arginine methylation in the global control of RNA splicing and translation, Sci. Bull. 66 (2021) 1342-1357, https://doi.org/10.1016/j.scib.2021.01.004.

[91]

Y. Jin, J. Zhou, F. Xu, B. Jin, L. Cui, Y. Wang, X. Du, J. Li, P. Li, R. Ren, J. Pan, Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia, J. Clin. Invest. 126 (2016) 3961-3980, https://doi.org/10.1172/jci85239.

[92]

C. Liu, W. Zou, D. Nie, S. Li, C. Duan, M. Zhou, P. Lai, S. Yang, S. Ji, Y. Li, M. Mei, S. Bao, Y. Jin, J. Pan, Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML, Cell Metab 34 (2022) 818-835, https://doi.org/10.1016/j.cmet.2022.04.004.

[93]

G. Cheloni, M. Tanturli, I. Tusa, N. Ho DeSouza, Y. Shan, A. Gozzini, F. Mazurier, E. Rovida, S. Li, P. Dello Sbarba, Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine, Blood 130 (2017) 655-665, https://doi.org/10.1182/blood-2016-10-745588.

[94]

R. Ghaffarnia, A. Nasrollahzadeh, D. Bashash, N. Nasrollahzadeh, S.A. Mousavi, S.H. Ghaffari, Inhibition of c-Myc using 10058-F4 induces anti-tumor effects in ovarian cancer cells via regulation of FOXO target genes, Eur, J. Pharmacol. 908 (2021) 174345, https://doi.org/10.1016/j.ejphar.2021.174345.

[95]

A. Agarwal, R.J. MacKenzie, R. Pippa, C.A. Eide, J. Oddo, J.W. Tyner, R. Sears, M.P. Vitek, M.D. Odero, D.J. Christensen, B.J. Druker, Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia, Clin. Cancer Res. 20 (2014) 2092-2103, https://doi.org/10.1158/1078-0432.ccr-13-2575.

[96]

M. Willmann, I. Sadovnik, G. Eisenwort, M. Entner, T. Bernthaler, G. Stefanzl, E. Hadzijusufovic, D. Berger, H. Herrmann, G. Hoermann, Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Pht chronic myeloid leukemia, Exp. Hematol 57 (2018) 50-59, https://doi.org/10.1016/j.exphem.2017.09.012.

[97]

K. Naka, New routes to eradicating chronic myelogenous leukemia stem cells by targeting metabolism, Int. J. Hematol. 113 (2021) 648-655, https://doi.org/10.1007/s12185-021-03112-y.

[98]

B.Z. Carter, P.Y. Mak, H. Mu, X. Wang, W. Tao, D.H. Mak, E.J. Dettman, M. Cardone, O. Zernovak, T. Seki, Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model, Haematologica 105 (2020) 1274-1284, https://doi.org/10.3324/haematol.2019.219261.

[99]

A. Abraham, S. Qiu, B.K. Chacko, H. Li, A.J. Paterson, J. He, P. Agarwal, M. Shah, R.S. Welner, V.M. Darley-Usmar, SIRT 1 mediates enhanced mitochondrial oxidative phosphorylation in chronic myelogenous leukemia stem cells, Blood 132 (2018) 932, https://doi.org/10.1182/blood-2018-99-115709.

[100]

Z. Zheng, L. Wang, S. Cheng, Y. Wang, W. Zhao, Autophagy and leukemia, Autophagy: Biol. Dis.: Clin. Sci (2020) 601-613, https://doi.org/10.1007/978-981-15-4272-5_43.

[101]

R. Kalluri, The biology and function of exosomes in cancer, J. Clin. Invest. 126 (2016) 1208-1215, https://doi.org/10.1172/jci81135.

[102]

G. V Helgason, A. Mukhopadhyay, M. Karvela, P. Salomoni, B. Calabretta, T. L Holyoake, Autophagy in chronic myeloid leukaemia: stem cell survival and implication in therapy, Curr. Cancer Drug Targets 13 (2013) 724-734, https://doi.org/10.2174/15680096113139990088.

[103]

S. Taverna, A. Flugy, L. Saieva, E.C. Kohn, A. Santoro, S. Meraviglia, G. De Leo, R. Alessandro, Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis, Int. J. Cancer 130 (2012) 2033-2043, https://doi.org/10.1002/ijc.26217.

[104]

A. Sinclair, A. Latif, T. Holyoake, Targeting survival pathways in chronic myeloid leukaemia stem cells, Br. J. Pharmacol. 169 (2013) 1693-1707, https://doi.org/10.1111/bph.12183.

[105]

S. Kavanagh, A. Nee, J.H. Lipton, Emerging alternatives to tyrosine kinase inhibitors for treating chronic myeloid leukemia, Expert Opin. Emerg. Drugs 23 (2018) 51-62, https://doi.org/10.1080/14728214.2018.1445717.

[106]

C. Sakamoto, H. Kohara, H. Inoue, M. Narusawa, Y. Ogawa, L. Hirose-Yotsuya, S. Miyamoto, Y. Matsumura, K. Yamada, A. Takahashi, Therapeutic vaccination based on side population cells transduced by the granulocyte-macrophage colonystimulating factor gene elicits potent antitumor immunity, Cancer Gene Ther. 24 (2017) 165-174, https://doi.org/10.1038/cgt.2016.80.

[107]

C. Riether, T. Gschwend, A.-L. Huguenin, C. Schürch, A. Ochsenbein, Blocking programmed cell death 1 in combination with adoptive cytotoxic T-cell transfer eradicates chronic myelogenous leukemia stem cells, Leukemia 29 (2015) 1781-1785, https://doi.org/10.1038/leu.2015.26.

[108]

A. Navabi, B. Akbari, M. Abdalsamadi, S. Naseri, The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance, Life Sci. 296 (2022) 120437, https://doi.org/10.1016/j.lfs.2022.120437.

[109]

V. Kumar, Jyotirmayee, M. Verma, Developing therapeutic approaches for chronic myeloid leukemia: a review, Mol. Cell. Biochem. 478 (2023) 1013-1029, https://doi.org/10.1007/s11010-022-04576-0.

[110]

J. Cortes, J.H. Lipton, D. Rea, R. Digumarti, C. Chuah, N. Nanda, A.-C. Benichou, A.R. Craig, M. Michallet, F.E. Nicolini, Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation, Blood 120 (2012) 2573-2580, https://doi.org/10.3410/f.717953868.793459552.

AI Summary AI Mindmap
PDF (946KB)

425

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/