Natural product databases for drug discovery: Features and applications

Tao Zeng , Jiahao Li , Ruibo Wu

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100050

PDF (1474KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100050 DOI: 10.1016/j.pscia.2024.100050
Review Article
research-article

Natural product databases for drug discovery: Features and applications

Author information +
History +
PDF (1474KB)

Abstract

Natural products (NPs) exhibit diverse chemical structures and biological activities that make them valuable sources for drug discovery. With advancements in computational technology, computation-enabled natural drug discovery is gaining increasing significance, with NP databases playing a pivotal role. In light of this, we first summarize the key features of NP databases, including structural data, property annotations, biological sources, biosynthetic pathways, and web interfaces. Subsequently, the wide applications of these databases in drug discovery, such as virtual screening, knowledge graph construction, and molecular generation, are reviewed. We further discuss the puzzle of database development, focusing on data quality and updating. Finally, we emphasize the pivotal role of team collaboration and toolkit innovation in harnessing the immense potential of NP-related databases to accelerate bioactivity mining, structure modification, and manufacturing. This review aims to elucidate the key features and applications of NP databases, with the goal of aiding researchers in developing and maintaining high-quality NP databases for drug discovery.

Keywords

Natural products / Database / Drug discovery / Cheminformatics / Computer-aided drug design

Cite this article

Download citation ▾
Tao Zeng, Jiahao Li, Ruibo Wu. Natural product databases for drug discovery: Features and applications. Pharmaceutical Science Advances, 2024, 2(1): 100050 DOI:10.1016/j.pscia.2024.100050

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

This work was supported by the National Key Research and Development Program of China (2023YFC3404900) and the Key Area Research and Development Program of Guangdong Province, China (2022B1111080005). We also thank the Top-Notch Young Talents Program of China for its support.

CRediT authorship contribution statement

Tao Zeng: Writing - original draft, Resources, Methodology. Jiahao Li: Resources. Ruibo Wu: Writing - review & editing, Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Not applicable.

References

[1]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83 (3) (2020) 770-803, https://doi.org/10.1021/acs.jnatprod.9b01285.

[2]

Z. Luo, F. Yin, X. Wang, L. Kong, Progress in approved drugs from natural product resources, Chin. J. Nat. Med. 22 (3) (2024) 195-211, https://doi.org/10.1016/S1875-5364(24)60582-0.

[3]

N.J. White, Qinghaosu (artemisinin): the price of success, Science 320 (5874) (2008) 330-334, https://doi.org/10.1126/science.1155165.

[4]

M.C. Wani, H.L. Taylor, M.E. Wall, P. Coggon, A.T. McPhail, Plant antitumor agents. Vi. The isolation and structure of taxol, a novel antileukemic and antitumor agent from taxus brevifolia, J. Am. Chem. Soc. 93 (9) (1971) 2325-2327, https://doi.org/10.1021/ja00738a045.

[5]

F. Jin, P. Haixue, T. Gongli, Research advances in biosynthesis of natural product drugs in the past decade, Synth. Biol J (2024) 1-39, https://doi.org/10.12211/2096-8280.2023-092.

[6]

K. Khalaf, P. Tornese, A. Cocco, A. Albanese, Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases, Transl. Neurodegener. 11 (1) (2022) 33, https://doi.org/10.1186/s40035-022-00307-z.

[7]

G. Garcia-Effron, Rezafungin—mechanisms of action, susceptibility and resistance: similarities and differences with the other echinocandins, J. Fungi 6 (4) (2020) 262, https://doi.org/10.3390/jof6040262.

[8]

M. Sorokina, P. Merseburger, K. Rajan, M.A. Yirik, C. Steinbeck, COCONUT online: collection of open natural products database, J. Cheminf. 13 (1) (2021) 2, https://doi.org/10.1186/s13321-020-00478-9.

[9]

H. Zhao, Y. Yang, S. Wang, X. Yang, K. Zhou, C. Xu, X. Zhang, J. Fan, D. Hou, X. Li, H. Lin, Y. Tan, S. Wang, X.-Y. Chu, D. Zhuoma, F. Zhang, D. Ju, X. Zeng, Y.Z. Chen, NPASS database update 2023: quantitative natural product activity and species source database for biomedical research, Nucleic Acids Res. 51 (D1) (2023) D621-D628, https://doi.org/10.1093/nar/gkac1069.

[10]

A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, et al., Natural products in drug discovery: advances and opportunities, Nat. Rev. Drug Discov. 20 (3) (2021) 200-216, https://doi.org/10.1038/s41573-020-00114-z.

[11]

T. Rodrigues, D. Reker, P. Schneider, G. Schneider, Counting on natural products for drug design, Nat. Chem. 8 (6) (2016) 531-541, https://doi.org/10.1038/nchem.2479.

[12]

M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res. 28 (1) (2000) 27-30, https://doi.org/10.1093/nar/28.1.27.

[13]

R. Caspi, R. Billington, I.M. Keseler, A. Kothari, M. Krummenacker, P.E. Midford, W.K. Ong, S. Paley, P. Subhraveti, P.D. Karp, The MetaCyc database of metabolic pathways and enzymes - a 2019 update Nucleic Acids Res. 48 (D1) (2020) D445-D453, https://doi.org/10.1093/nar/gkz862.

[14]

K. Gallo, E. Kemmler, A. Goede, F. Becker, M. Dunkel, R. Preissner, P. Banerjee, SuperNatural 3.0—a database of natural products and natural product-based derivatives, Nucleic Acids Res. 51 (D1) (2023) D654-D659, https://doi.org/10.1093/nar/gkac1008.

[15]

T. Zeng, Y. Chen, Y. Jian, F. Zhang, R. Wu, Chemotaxonomic investigation of plant terpenoids with an established database (TeroMOL), New Phytol. 235 (2) (2022) 662-673, https://doi.org/10.1111/nph.18133.

[16]

C. Lyu, T. Chen, B. Qiang, N. Liu, H. Wang, L. Zhang, Z. Liu, CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean, Nucleic Acids Res. 49 (D1) (2021) D509-D515, https://doi.org/10.1093/nar/gkaa763.

[17]

M. Sorokina, C. Steinbeck, Review on natural products databases: where to find data in 2020, J. Cheminf. 12 (1) (2020) 20, https://doi.org/10.1186/s13321-020-00424-9.

[18]

N.E. Thomford, D.A. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi, K. Dzobo, Natural products for drug discovery in the 21st century: innovations for novel drug discovery, Int. J. Mol. Sci. (2018) 1578, https://doi.org/10.3390/ijms19061578.

[19]

Y. Chen, C. de Bruyn Kops, J. Kirchmair, Resources for chemical, biological, and structural data on natural products, in: A.D. Kinghorn, H. Falk, S. Gibbons, J.i. Kobayashi, Y. Asakawa, J.-K. Liu (Eds.), Progress in the Chemistry of Organic Natural Products 110: Cheminformatics in Natural Product Research, Springer International Publishing, Cham, 2019, pp. 37-71, https://doi.org/10.1007/978-3-030-14632-0_2.

[20]

F. Ntie-Kang, D. Svozil, An enumeration of natural products from microbial, marine and terrestrial sources, Phys. Sci. Rev. 5 (8) (2020) 20180121, https://doi.org/10.1515/psr-2018-0121.

[21]

J.A. van Santen, S.A. Kautsar, M.H. Medema, R.G. Linington, Microbial natural product databases: moving forward in the multi-omics era, Nat. Prod. Rep. 38 (1) (2021) 264-278, https://doi.org/10.1039/D0NP00053A.

[22]

M.H. Medema, The year 2020 in natural product bioinformatics: an overview of the latest tools and databases, Nat. Prod. Rep. 38 (2) (2021) 301-306, https://doi.org/10.1039/D0NP00090F.

[23]

F.D. Prieto-Martínez, U. Norinder, J.L. Medina-Franco, Cheminformatics explorations of natural products, in: A.D. Kinghorn, H. Falk, S. Gibbons, J.i. Kobayashi, Y. Asakawa, J.-K. Liu (Eds.), Progress in the Chemistry of Organic Natural Products 110: Cheminformatics in Natural Product Research, Springer International Publishing, Cham, 2019, pp. 1-35, https://doi.org/10.1007/978-3-030-14632-0_1.

[24]

Y. Chen, J. Kirchmair, Cheminformatics in natural product-based drug discovery, Mol. Inf. 39 (12) (2020) 2000171, https://doi.org/10.1002/minf.202000171.

[25]

Y. Chen, M. Garcia de Lomana, N.O. Friedrich, J. Kirchmair, Characterization of the chemical space of known and readily obtainable natural products, J. Chem. Inf. Model. 58 (8) (2018) 1518-1532, https://doi.org/10.1021/acs.jcim.8b00302.

[26]

Daylight theory: SMILES.https://daylight.com/dayhtml/doc/theory/theory.sm iles.html. (Accessed 23 March 2024).

[27]

S.E. Stein, S.R. Heller, D.V. Tchekhovskoi, An open standard for chemical structure representation: the IUPAC chemical identifier,in:International Chemical Information Conference, Nimes FR, 2003, pp. 131-143.

[28]

H. Ozturk, A. Ozgur, P. Schwaller, T. Laino, E. Ozkirimli, Exploring chemical space using natural language processing methodologies for drug discovery, Drug Discov. Today 25 (4) (2020) 689-705, https://doi.org/10.1016/j.drudis.2020.01.020.

[29]

Y.C. Lo, S.E. Rensi, W. Torng, R.B. Altman, Machine learning in chemoinformatics and drug discovery, Drug Discov. Today 23 (8) (2018) 1538-1546, https://doi.org/10.1016/j.drudis.2018.05.010.

[30]

C.N. Cavasotto, M.G. Aucar, N.S. Adler, Computational chemistry in drug lead discovery and design, Int. J. Quant. Chem. 119 (2) (2019) e25678, https://doi.org/10.1002/qua.25678.

[31]

G. Landrum, Rdkit: open-source cheminformatics software. http://www.rdkit.org. (Accessed 29 November 2018).

[32]

N.M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open babel: an open chemical toolbox, J. Cheminf. 3 (1) (2011) 33, https://doi.org/10.1186/1758-2946-3-33.

[33]

I. Pletnev, A. Erin, A. McNaught, K. Blinov, D. Tchekhovskoi, S. Heller, Inchikey collision resistance: an experimental testing, J. Cheminf. 4 (1) (2012) 39, https://doi.org/10.1186/1758-2946-4-39.

[34]

M.C. Burger, Chemdoodle web components: html 5 toolkit for chemical graphics, interfaces, and informatics, J. Cheminf. 7 (1) (2015) 35, https://doi.org/10.1186/s13321-015-0085-3.

[35]

M. Wang, J.J. Carver, V.V. Phelan, et al., Sharing and community curation of mass spectrometry data with global natural products social molecular networking, Nat. Biotechnol. 34 (8) (2016) 828-837, https://doi.org/10.1038/nbt.3597.

[36]

D.S. Wishart, Z. Sayeeda, Z. Budinski, et al., NP-MRD: the natural products magnetic resonance database, Nucleic Acids Res. 50 (D1) (2022) D665-D677, https://doi.org/10.1093/nar/gkab1052.

[37]

NMRdata.http://www.nmrdata.com/. (Accessed 23 March 2024).

[38]

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res. 49 (D1) (2021) D1388-D1395, https://doi.org/10.1093/nar/gkaa971.

[39]

C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 23 (1-3) (1997) 3-25, https://doi.org/10.1016/s0169-409x(96)00423-1.

[40]

C.A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol. 1 (4) (2004) 337-341, https://doi.org/10.1016/j.ddtec.2004.11.007.

[41]

H. van de Waterbeemd, E. Gifford, ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2 (3) (2003) 192-204, https://doi.org/10.1038/nrd1032.

[42]

G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res. 49 (W1) (2021) W5-W14, https://doi.org/10.1093/nar/gkab255.

[43]

H. Yang, C. Lou, L. Sun, J. Li, Y. Cai, Z. Wang, W. Li, G. Liu, Y. Tang, admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties, Bioinformatics 35 (6) (2019) 1067-1069, https://doi.org/10.1093/bioinformatics/bty707.

[44]

A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (1) (2017) 42717, https://doi.org/10.1038/srep42717.

[45]

B. Bhhatarai, W.P. Walters, C.E.C.A. Hop, G. Lanza, S. Ekins, Opportunities and challenges using artificial intelligence in adme/tox, Nat. Mater. 18 (5) (2019) 418-422, https://doi.org/10.1038/s41563-019-0332-5.

[46]

M. Mangal, P. Sagar, H. Singh, G.P.S. Raghava, S.M. Agarwal, NPACT: naturally occurring plant-based anti-cancer compound-activity-target database, Nucleic Acids Res. 41 (D1) (2013) D1124-D1129, https://doi.org/10.1093/nar/gks1047.

[47]

T. Zeng, Z. Liu, J. Zhuang, Y. Jiang, W. He, H. Diao, N. Lv, Y. Jian, D. Liang, Y. Qiu, R. Zhang, F. Zhang, X. Tang, R. Wu, TeroKit: a database-driven web server for terpenome research, J. Chem. Inf. Model. 60 (4) (2020) 2082-2090, https://doi.org/10.1021/acs.jcim.0c00141.

[48]

B. Zdrazil, E. Felix, F. Hunter, et al., The ChEMBL database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods, Nucleic Acids Res. 52 (D1) (2024) D1180-D1192, https://doi.org/10.1093/nar/gkad1004.

[49]

M. Valli, R.N. dos Santos, L.D. Figueira, C.H. Nakajima, I. Castro-Gamboa, A.D. Andricopulo, V.S. Bolzani, Development of a natural products database from the biodiversity of Brazil, J. Nat. Prod. 76 (3) (2013) 439-444, https://doi.org/10.1021/np3006875.

[50]

H. Xu, W. Zhang, Y. Zhou, Z. Yue, T. Yan, Y. Zhang, Y. Liu, Y. Hong, S. Liu, F. Zhu, L. Tao, Systematic description of the content variation of natural products (nps): to prompt the yield of high-value nps and the discovery of new therapeutics, J. Chem. Inf. Model. 63 (5) (2023) 1615-1625, https://doi.org/10.1021/acs.jcim.2c01459.

[51]

C.Y.-C. Chen, TCM database@taiwan; the world's largest traditional Chinese medicine database for drug screening in silico, PLoS One 6 (1) (2011) e15939, https://doi.org/10.1371/journal.pone.0015939.

[52]

Q. Lv, G. Chen, H. He, Z. Yang, L. Zhao, H.-Y. Chen, C.Y.-C. Chen, TCMBank: bridges between the largest herbal medicines, chemical ingredients, target proteins, and associated diseases with intelligence text mining, Chem. Sci. 14 (39) (2023) 10684-10701, https://doi.org/10.1039/D3SC02139D.

[53]

T. Chen, M. Yang, G. Cui, J. Tang, Y. Shen, J. Liu, Y. Yuan, J. Guo, L. Huang, IMP: bridging the gap for medicinal plant genomics, Nucleic Acids Res. 52 (D1) (2024) D1347-D1354, https://doi.org/10.1093/nar/gkad898.

[54]

R. Bao, H. Zhang, Y. Tang, Biomimetic synthesis of natural products: a journey to learn, to mimic, and to be better, Acc. Chem. Res. 54 (19) (2021) 3720-3733, https://doi.org/10.1021/acs.accounts.1c00459.

[55]

N. Shakour, M. Mohadeszadeh, M. Iranshahi, Biomimetic synthesis of biologically active natural products: an updated review, Mini-Rev. Med. Chem. 24 (1) (2024) 3-25, https://doi.org/10.2174/1389557523666230417083143.

[56]

C. UniProt, UniProt: a worldwide hub of protein knowledge, Nucleic Acids Res. 47 (D1) (2019) D506-D515, https://doi.org/10.1093/nar/gky1049.

[57]

T. Yu, A.G. Boob, M.J. Volk, X. Liu, H. Cui, H. Zhao, Machine learning-enabled retrobiosynthesis of molecules, Nat. Catal. 6 (2) (2023) 137-151, https://doi.org/10.1038/s41929-022-00909-w.

[58]

F. Allen, The cambridge structural database: a quarter of a million crystal structures and rising, Acta Crystallogr. B 58 (3 Part 1) (2002) 380-388, https://doi.org/10.1107/S0108768102003890.

[59]

S.K. Burley, C. Bhikadiya, C. Bi, et al., RCSB protein data bank (RCSB.Org): delivery of experimentally-determined pdb structures alongside one million computed structure models of proteins from artificial intelligence/machine learning, Nucleic Acids Res. 51 (D1) (2023) D488-D508, https://doi.org/10.1093/nar/gkac1077.

[60]

J.A. van Santen, E.F. Poynton, D. Iskakova, E. McMann, Tyler A. Alsup, T.N. Clark, C.H. Fergusson, D.P. Fewer, A.H. Hughes, C.A. McCadden, J. Parra, S. Soldatou, J.D. Rudolf, E.M.L. Janssen, K.R. Duncan, R.G. Linington, The natural products atlas 2.0:a database of microbially-derived natural products, Nucleic Acids Res. 50 (D1) (2022) D1317-D1323, https://doi.org/10.1093/nar/gkab941.

[61]

N. Chen, R. Zhang, T. Zeng, X. Zhang, R. Wu, Developing TeroENZ and TeroMAP modules for the terpenome research platform TeroKit, Database 2023 (2023) baad020, https://doi.org/10.1093/database/baad020.

[62]

J. Fan, A. Fu, L. Zhang, Progress in molecular docking, Quant. Biol. 7 (2) (2019) 83-89, https://doi.org/10.1007/s40484-019-0172-y.

[63]

D. Schaller, D. Śribar, T. Noonan, L. Deng, T.N. Nguyen, S. Pach, D. Machalz, M. Bermudez, G. Wolber, Next generation 3D pharmacophore modeling, Wiley Interdiscip. Rev. Comput. Mol. Sci. 10 (4) (2020) e1468, https://doi.org/10.1002/wcms.1468.

[64]

I. Muegge, P. Mukherjee, An overview of molecular fingerprint similarity search in virtual screening, Expet Opin. Drug Discov. 11 (2) (2016) 137-148, https://doi.org/10.1517/17460441.2016.1117070.

[65]

J.A. de Sousa Luis, R.P.C. Barros, N.F. de Sousa, E. Muratov, L. Scotti, M.T. Scotti, Virtual screening of natural products database, Mini-Rev. Med. Chem. 21 (18) (2021) 2657-2730, https://doi.org/10.2174/1389557520666200730161549.

[66]

N. Zhou, C. Zheng, H. Tan, L. Luo, Identification of PLK1-PBD inhibitors from the library of marine natural products: 3 D QSAR pharmacophore, ADMET, scaffold hopping, molecular docking, and molecular dynamics study, Mar. Drugs (2024) 83, https://doi.org/10.3390/md22020083.

[67]

K.E. Juárez-Mercado, M.A. Gómez-Hernández, J. Salinas-Trujano, L. Córdova- Bahena, C. Espitia, S.M. Pérez-Tapia, J.L. Medina-Franco, M.A. Velasco-Velázquez, Identification of sars-cov-2 main protease inhibitors using chemical similarity analysis combined with machine learning, Pharmaceuticals (2024) 240, https://doi.org/10.3390/ph17020240.

[68]

N. Arul Murugan, G. Ruba Priya, G. Narahari Sastry, S. Markidis, Artificial intelligence in virtual screening: models versus experiments, Drug Discov. Today 27 (7) (2022) 1913-1923, https://doi.org/10.1016/j.drudis.2022.05.013.

[69]

A. Tropsha, O. Isayev, A. Varnek, G. Schneider, A. Cherkasov, Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR, Nat. Rev. Drug Discov. 23 (2) (2024) 141-155, https://doi.org/10.1038/s41573-023-00832-0.

[70]

X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery, Chem. Rev. 119 (18) (2019) 10520-10594, https://doi.org/10.1021/acs.chemrev.8b00728.

[71]

R. Zhang, X. Li, X. Zhang, H. Qin, W. Xiao, Machine learning approaches for elucidating the biological effects of natural products, Nat. Prod. Rep. 38 (2) (2021) 346-361, https://doi.org/10.1039/D0NP00043D.

[72]

M.W. Mullowney, K.R. Duncan, S.S. Elsayed, et al., Artificial intelligence for natural product drug discovery, Nat. Rev. Drug Discov. 22 (11) (2023) 895-916, https://doi.org/10.1038/s41573-023-00774-7.

[73]

Z. Liu, D. Huang, S. Zheng, Y. Song, B. Liu, J. Sun, Z. Niu, Q. Gu, J. Xu, L. Xie, Deep learning enables discovery of highly potent anti-osteoporosis natural products, Eur. J. Med. Chem. 210 (2021) 112982, https://doi.org/10.1016/j.ejmech.2020.112982.

[74]

R. Zhang, S. Ren, Q. Dai, T. Shen, X. Li, J. Li, W. Xiao, InflamNat: web-based database and predictor of anti-inflammatory natural products, J. Cheminf. 14 (1) (2022) 30, https://doi.org/10.1186/s13321-022-00608-5.

[75]

R. Zhang, J. Lin, Y. Zou, X.J. Zhang, W.L. Xiao, Chemical space and biological target network of anti-inflammatory natural products, J. Chem. Inf. Model. 59 (1) (2019) 66-73, https://doi.org/10.1021/acs.jcim.8b00560.

[76]

M. Kibble, N. Saarinen, J. Tang, K. Wennerberg, S. Mäkelä, T. Aittokallio, Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products, Nat. Prod. Rep. 32 (8) (2015) 1249-1266, https://doi.org/10.1039/C5NP00005J.

[77]

N.T. Cockroft, X. Cheng, J.R. Fuchs, STarFish: a stacked ensemble target fishing approach and its application to natural products, J. Chem. Inf. Model. 59 (11) (2019) 4906-4920, https://doi.org/10.1021/acs.jcim.9b00489.

[78]

B. Qiang, J. Lai, H. Jin, L. Zhang, Z. Liu, Target prediction model for natural products using transfer learning, Int. J. Mol. Sci. (2021) 4632, https://doi.org/10.3390/ijms22094632.

[79]

A.L. Hopkins, Network pharmacology: the next paradigm in drug discovery, Nat. Chem. Biol. 4 (11) (2008) 682-690, https://doi.org/10.1038/nchembio.118.

[80]

J. Gu, Y. Gui, L. Chen, G. Yuan, H.Z. Lu, X. Xu, Use of natural products as chemical library for drug discovery and network pharmacology, PLoS One 8 (4) (2013) e62839, https://doi.org/10.1371/journal.pone.0062839.

[81]

X. Wang, Z.-Y. Wang, J.-H. Zheng, S. Li, TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches, Chin. J. Nat. Med. 19 (1) (2021) 1-11, https://doi.org/10.1016/S1875-5364(21)60001-8.

[82]

Y. Ouyang, Y. Rong, Y. Wang, Y. Guo, L. Shan, X. Yu, L. Li, J. Si, X. Li, K. Ma, A systematic study of the mechanism of acacetin against sepsis based on network pharmacology and experimental validation, Front. Pharmacol. 12 (2021) 683645, https://doi.org/10.3389/fphar.2021.683645.

[83]

B. Yu, M. Zhou, Z. Dong, H. Zheng, Y. Zhao, J. Zhou, C. Zhang, F. Wei, G. Yu, W.J. Liu, H. Liu, Y. Wang, Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription modified shen-yan-fang-shuai formula in treating diabetic nephropathy, Pharm. Biol. 61 (1) (2023) 1222-1233, https://doi.org/10.1080/13880209.2023.2241521.

[84]

J. Ru, P. Li, J. Wang, W. Zhou, B. Li, C. Huang, P. Li, Z. Guo, W. Tao, Y. Yang, X. Xu, Y. Li, Y. Wang, L. Yang, TCMSP: a database of systems pharmacology for drug discovery from herbal medicines, J. Cheminf. 6 (1) (2014) 13, https://doi.org/10.1186/1758-2946-6-13.

[85]

Y. Wu, F. Zhang, K. Yang, S. Fang, D. Bu, H. Li, L. Sun, H. Hu, K. Gao, W. Wang, X. Zhou, Y. Zhao, J. Chen, SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping, Nucleic Acids Res. 47 (D1) (2019) D1110-D1117, https://doi.org/10.1093/nar/gky1021.

[86]

Z. Dai, T. Hu, J. Wei, X. Wang, C. Cai, Y. Gu, Y. Hu, W. Wang, Q. Wu, J. Fang, Network-based identification and mechanism exploration of active ingredients against alzheimer's disease via targeting endoplasmic reticulum stress from traditional Chinese medicine, Comput. Struct. Biotechnol. J. 23 (2024) 506-519, https://doi.org/10.1016/j.csbj.2023.12.017.

[87]

A. Mullard, The drug-maker's guide to the galaxy, Nature 549 (7673) (2017) 445-447, https://doi.org/10.1038/549445a.

[88]

M.J. Yu, Natural product-like virtual libraries: recursive atom-based enumeration, J. Chem. Inf. Model. 51 (3) (2011) 541-557, https://doi.org/10.1021/ci1002087.

[89]

M.H.S. Segler, T. Kogej, C. Tyrchan, M.P. Waller, Generating focused molecule libraries for drug discovery with recurrent neural networks, ACS Cent. Sci. 4 (1) (2018) 120-131, https://doi.org/10.1021/acscentsci.7b00512.

[90]

T. Ochiai, T. Inukai, M. Akiyama, K. Furui, M. Ohue, N. Matsumori, S. Inuki, M. Uesugi, T. Sunazuka, K. Kikuchi, H. Kakeya, Y. Sakakibara, Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity, Commun. Chem. 6 (1) (2023) 249, https://doi.org/10.1038/s42004-023-01054-6.

[91]

N. De Cao, T. Kipf, Molgan: an implicit generative model for small molecular graphs. ICML18 Workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018, https://doi.org/10.48550/arXiv.1805.11973.

[92]

V. Bagal, R. Aggarwal, P.K. Vinod, U.D. Priyakumar, MolGPT: molecular generation using a transformer-decoder model, J. Chem. Inf. Model. 62 (9) (2022) 2064-2076, https://doi.org/10.1021/acs.jcim.1c00600.

[93]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Long Beach, California, USA, 2017, pp. 6000-6010.

[94]

M. Ma, X. Zhang, L. Zhou, Z. Han, Y. Shi, J. Li, L. Wu, Z. Xu, W. Zhu, D3Rings: a fast and accurate method for ring system identification and deep generation of drug-like cyclic compounds, J. Chem. Inf. Model. 64 (3) (2024) 724-736, https://doi.org/10.1021/acs.jcim.3c01657.

[95]

T. Zeng, B.A. Hess Jr. F. Zhang, R. Wu, Bio-inspired chemical space exploration of terpenoids, Briefings Bioinf. 23 (5) (2022) bbac197, https://doi.org/10.1093/bib/bbac197.

[96]

S. Mignani, J. Rodrigues, H. Tomas, R. Jalal, P.P. Singh, J.-P. Majoral, R.A. Vishwakarma, Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov. Today 23 (3) (2018) 605-615, https://doi.org/10.1016/j.drudis.2018.01.010.

[97]

H. Lachance, S. Wetzel, K. Kumar, H. Waldmann, Charting, navigating, and populating natural product chemical space for drug discovery, J. Med. Chem. 55 (13) (2012) 5989-6001, https://doi.org/10.1021/jm300288g.

[98]

M. Feher, J.M. Schmidt, Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry, J. Chem. Inf. Comput. Sci. 43 (1) (2003) 218-227, https://doi.org/10.1021/ci0200467.

[99]

P. Ertl, A. Schuffenhauer, Cheminformatics analysis of natural products: lessons from nature inspiring the design of new drugs, Prog. Drug Res. 66 (2008) 217-235, https://doi.org/10.1007/978-3-7643-8595-8_4.

[100]

D.J. Huggins, A.R. Venkitaraman, D.R. Spring, Rational methods for the selection of diverse screening compounds, ACS Chem. Biol. 6 (3) (2011) 208-217, https://doi.org/10.1021/cb100420r.

[101]

Dictionary of natural products.https://dnp.chemnetbase.com. (Accessed 23 March 2024).

[102]

Dictionary of marine natural products.https://dmnp.chemnetbase.com. (Accessed 23 March 2024)

[103]

F.I. Saldivar-Gonzalez, M. Valli, A.D. Andricopulo, V. da Silva Bolzani, J.L. Medina-Franco, Chemical space and diversity of the nubbe database: a chemoinformatic characterization, J. Chem. Inf. Model. 59 (1) (2019) 74-85, https://doi.org/10.1021/acs.jcim.8b00619.

[104]

T. Zeng, Z. Liu, H. Liu, W. He, X. Tang, L. Xie, R. Wu, Exploring chemical and biological space of terpenoids, J. Chem. Inf. Model. 59 (9) (2019) 3667-3678, https://doi.org/10.1021/acs.jcim.9b00443.

[105]

P. Ertl, S. Roggo, A. Schuffenhauer, Natural product-likeness score and its application for prioritization of compound libraries, J. Chem. Inf. Model. 48 (1) (2008) 68-74, https://doi.org/10.1021/ci700286x.

[106]

H.W. Kim, M. Wang, C.A. Leber, L.F. Nothias, R. Reher, K.B. Kang, J.J.J. van der Hooft, P.C. Dorrestein, W.H. Gerwick, G.W. Cottrell, Npclassifier: a deep neural network-based structural classification tool for natural products, J. Nat. Prod. 84 (11) (2021) 2795-2807, https://doi.org/10.1021/acs.jnatprod.1c00399.

[107]

L. Yuan, Y. Tian, S. Ding, Y. Liu, F. Chen, T. Zhang, W. Tu, J. Chen, Q.-N. Hu, PrecursorFinder: a customized biosynthetic precursor explorer, Bioinformatics 35 (9) (2019) 1603-1604, https://doi.org/10.1093/bioinformatics/bty838.

[108]

M. Koch, T. Duigou, J.L. Faulon, Reinforcement learning for bioretrosynthesis, ACS Synth. Biol. 9 (1) (2020) 157-168, https://doi.org/10.1021/acssynbio.9b00447.

[109]

S. Zheng, T. Zeng, C. Li, B. Chen, C.W. Coley, Y. Yang, R. Wu, Deep learning driven biosynthetic pathways navigation for natural products with bionavi-np, Nat. Commun. 13 (1) (2022) 3342, https://doi.org/10.1038/s41467-022-30970-9.

[110]

P. Ambure, M.N.D.S. Cordeiro, Importance of data curation in QSAR studies especially while modeling large-size datasets, in: K. Roy (Ed.), Ecotoxicological QSARs, Springer US, New York, NY, 2020, pp. 97-109, https://doi.org/10.1007/978-1-0716-0150-1_5.

[111]

X.-C. Zhang, J.-C. Yi, G.-P. Yang, C.-K. Wu, T.-J. Hou, D.-S. Cao, ABC-Net: a divideand- conquer based deep learning architecture for SMILES recognition from molecular images, Briefings Bioinf. 23 (2) (2022) bbac033, https://doi.org/10.1093/bib/bbac033.

[112]

J. Mavraćić, C.J. Court, T. Isazawa, S.R. Elliott, J.M. Cole, ChemDataExtractor 2.0: autopopulated ontologies for materials science, J. Chem. Inf. Model. 61 (9) (2021) 4280-4289, https://doi.org/10.1021/acs.jcim.1c00446.

[113]

StoneMIND collector.https://stonewise.cn/mol_product. (Accessed 23 March 2024).

[114]

K. Petri Seiler, H. Kuehn, M. Pat Happ, D. DeCaprio, P.A. Clemons, Using chembank to probe chemical biology, Curr. Protoc. Bioinf. 22 (1) (2008) 14.5. 1-14.5.26, https://doi.org/10.1002/0471250953.bi1405s22.

[115]

F. Ntie-Kang, D. Zofou, S.B. Babiaka, R. Meudom, M. Scharfe, L.L. Lifongo, J.A. Mbah, L.M.a. Mbaze, W. Sippl, S.M.N. Efange, AfroDb: a select highly potent and diverse natural product library from african medicinal plants, PLoS One 8 (10) (2013) e78085, https://doi.org/10.1371/journal.pone.0078085.

[116]

J.L. Medina-Franco, Towards a unified Latin american natural products database: LANaPD, Future Sci. OA 6 (8) (2020) FSO468, https://doi.org/10.2144/fsoa-2020-0068.

[117]

Q. Yang, B. Cheng, Z. Tang, W. Liu, Applications and prospects of genome mining in the discovery of natural products, Synth. Biol J 2 (5) (2023) 697-715, https://doi.org/10.12211/2096-8280.2021-012.

[118]

M.Y. XI, Y.L. Hu, Y.C. Gu, H.M. Ge, Genome mining-directed discovery for natural medicinal products, Synth. Biol J (2024) 1-27, https://doi.org/10.12211/2096-8280.2023-086.

[119]

T. Hautbergue, E.L. Jamin, L. Debrauwer, O. Puel, I.P. Oswald, From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites, Nat. Prod. Rep. 35 (2) (2018) 147-173, https://doi.org/10.1039/C7NP00032D.

[120]

P. Yan, G. Wang, M. Huang, Z. Liu, C. Dai, B. Hu, M. Gu, Z. Deng, R. Liu, X. Wang, T. Liu, Combinatorial biosynthesis creates a novel aglycone polyether with high potency and low side effects against bladder cancer, Adv. Sci. (2024) e2404668, https://doi.org/10.1002/advs.202404668.

[121]

K.L. Kurita, E. Glassey, R.G. Linington, Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries, Proc. Natl. Acad. Sci. U.S.A. 112 (39) (2015) 11999-12004, https://doi.org/10.1073/pnas.1507743112.

[122]

Y. Yuan, C. Shi, H. Zhao, Machine learning-enabled genome mining and bioactivity prediction of natural products, ACS Synth. Biol. 12 (9) (2023) 2650-2662, https://doi.org/10.1021/acssynbio.3c00234.

AI Summary AI Mindmap
PDF (1474KB)

426

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/