Delayed treatment with hydro-ethanolic extract of Khaya grandifoliola protects mice from acetaminophen-hepatotoxicity through inhibition of c-Jun N-terminal kinase phosphorylation and mitochondrial dysfunction

Arnaud Fondjo Kouam , Ibrahim Njingou , Nina Jeannette Pekam Magoudjou , Hamed Bechir Ngoumbe , Philipe Herman Nfombouot Njitoyap , Elisabeth Menkem Zeuko'o , Frédéric Nico Njayou , Paul Fewou Moundipa

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100049

PDF (3068KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100049 DOI: 10.1016/j.pscia.2024.100049
Research Article
research-article

Delayed treatment with hydro-ethanolic extract of Khaya grandifoliola protects mice from acetaminophen-hepatotoxicity through inhibition of c-Jun N-terminal kinase phosphorylation and mitochondrial dysfunction

Author information +
History +
PDF (3068KB)

Abstract

The use of N-acetylcysteine against acetaminophen(APAP)-induced hepatotoxicity, a leading cause of liver injury, has several drawbacks, including short therapeutic windows. Khaya grandifoliola (Meliaceae) has been traditionally used to manage liver-related diseases, and many reports have confirmed its hepatoprotective properties. However, its therapeutic potential as an antidote against APAP-induced hepatotoxicity has yet to be proven in a clinically relevant model. This study aimed to verify the efficacy of delayed treatment with the hydroethanolic extract of K. grandifoliola (KgE) in suppressing the early injury phase of APAP pathophysiology. KgE was analyzed using HPLC/UV. Acute oral toxicity tests were conducted in mice to determine the therapeutic dose of KgE. Mice were treated with 300 ​mg/kg APAP; 1h and 12h later, they were treated with either predetermined doses of KgE or 20 ​mg/kg c-Jun N-Terminal Kinase (JNK) inhibitor SP600125, which served as a reference antidote. At 6h and 24h after APAP treatment, the parameters of liver damage and mitochondrial dysfunction, phosphorylation of JNK, and mitochondrial translocation were assessed. KgE at a dose of 5000 ​mg/kg was safe for mice. Accordingly, 100, 200, and 400 ​mg/kg were selected as curative treatments. Delayed administration of KgE reversed the histopathological changes in the liver, inhibited serum levels of alanine aminotransferase, reduced the liver content of nitric oxide and malondialdehyde, and restored hepatic glutathione pools and superoxide dismutase and catalase activities in APAP-intoxicated mice. Moreover, KgE prevented APAP-induced JNK phosphorylation and p-JNK mitochondrial translocation and rescued the activities of mitochondrial enzyme complexes II and V. HPLC/UV analysis revealed the presence of gallic acid, Quercetin and Silibinin, with retention times of 3.77, 11.63 and 11.95 ​min as the major active ingredients present in KgE. Our findings demonstrate that post-treatment with KgE protects the mouse liver from APAP-hepatotoxicity through the inhibition of JNK activation and mitochondrial dysfunction.

Keywords

Acetaminophen-hepatotoxicity / K. grandifoliola / Hydro-ethanolic extract / Inhibition JNK phosphorylation / Mitochondrial dysfunction

Cite this article

Download citation ▾
Arnaud Fondjo Kouam, Ibrahim Njingou, Nina Jeannette Pekam Magoudjou, Hamed Bechir Ngoumbe, Philipe Herman Nfombouot Njitoyap, Elisabeth Menkem Zeuko'o, Frédéric Nico Njayou, Paul Fewou Moundipa. Delayed treatment with hydro-ethanolic extract of Khaya grandifoliola protects mice from acetaminophen-hepatotoxicity through inhibition of c-Jun N-terminal kinase phosphorylation and mitochondrial dysfunction. Pharmaceutical Science Advances, 2024, 2(1): 100049 DOI:10.1016/j.pscia.2024.100049

登录浏览全文

4963

注册一个新账户 忘记密码

Ethical approval

All procedures complied with the European Union recommendations (Directive 2010/63/EU) for experimental design and analysis in pharmacology care and were approved by the Institutional Joint Review Board for Animals and Humans Bioethics of the University of Yaounde I-Cameroon (Ethical approval No 2022/13-09/SG/IJRBAHB/UYI).

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Funding

The authors declare that there is no funding to report.

CRediT authorship contribution statement

Arnaud Fondjo Kouam: Writing - review & editing, Writing - original draft, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Formal analysis, Conceptualization. Ibrahim Njingou: Writing - review & editing, Writing - original draft, Methodology, Investigation, Formal analysis. Nina Jeannette Pekam Magoudjou: Writing - review & editing, Writing - original draft, Methodology, Investigation, Formal analysis. Hamed Bechir Ngoumbe: Writing - review & editing, Writing - original draft, Methodology, Investigation, Formal analysis. Philipe Herman Nfombouot Njitoyap: Writing - review & editing, Writing - original draft, Methodology, Investigation, Formal analysis. Elisabeth Menkem Zeuko'o: Writing - review & editing, Visualization, Supervision, Methodology, Investigation. Frédéric Nico Njayou: Writing - review & editing, Writing - original draft, Visualization, Validation, Supervision, Resources, Methodology, Investigation, Formal analysis, Conceptualization. Paul Fewou Moundipa: Writing - review & editing, Visualization, Validation, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank the Laboratory of Physiology, Department of Animal Physiology of the University of Yaoundé 1 for providing the facilities for histopathological analysis and are grateful for the support of the trimester allocation for research modernization granted by the Ministry of Higher Education of Cameroon to Dr. Arnaud FONDJO KOUAM and Pr. Frédéric Nico Njayou. We also wish a peaceful rest to the soul of our collaborator, Mr. Hamed Béchir NGOUMBE, who passed away after the completion of this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2024.100049.

References

[1]

P. Nourjah, S.R. Ahmad, C. Karwoski, M. Willy, Estimates of acetaminophen (paracetomal)-associated overdoses in the United States, Pharmacoepidemiol, Drug Saf. 15 (2006) 398-405, https://doi.org/10.1002/pds.1191.

[2]

A. Ramachandran, H. Jaeschke, Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology, J. Clin. Transl. Res. 3 (2017) 157-169, https://doi.org/10.18053/jctres.03.2017S1.002.

[3]

H. Jaeschke, M.R. McGill, A. Ramachandran, Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity, Drug Metab, Rev. 44 (2012) 88-106, https://doi.org/10.3109/03602532.2011.602688.

[4]

C. Saito, J.J. Lemasters, H. Jaeschke, c-Jun n-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity, Toxicol. Appl. Pharmacol. 246 (2010) 8-17, https://doi.org/10.1016/j.taap.2010.04.015.

[5]

E. Yoon, A. Babar, M. Choudhary, M. Kutner, N. Pyrsopoulos, Acetaminopheninduced hepatotoxicity: a comprehensive update, J. Clin. Transl. Hepatol. 4 (2016) 131-142, https://doi.org/10.14218/JCTH.2015.00052.

[6]

K. Du, A. Ramachandran, H. Jaeschke, Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential, Redox Biol. 10 (2016) 148-156, https://doi.org/10.1016/j.redox.2016.10.001.

[7]

B.H. Rumack, D.N. Bateman, Acetaminophen and acetylcysteine dose and duration: past, present and future, Clin. Toxicol. Phila. Pa 50 (2012) 91-98, https://doi.org/10.3109/15563650.2012.659252.

[8]

V.S. Bebarta, L. Kao, B. Froberg, R.F. Clark, E. Lavonas, M. Qi, J. Delgado, J. McDonagh, T. Arnold, O. Odujebe, G. O'Malley, C. Lares, E. Aguilera, R. Dart, K. Heard, C. Stanford, J. Kokko, G. Bogdan, C. Mendoza, S. Mlynarchek, S. Rhyee, J. Hoppe, W. Haur, H.H. Tan, N.N. Tran, S. Varney, A. Zosel, J. Buchanan, M. Al- Helial, A multicenter comparison of the safety of oral versus intravenous acetylcysteine for treatment of acetaminophen overdose, Clin. Toxicol. Phila. Pa 48 (2010) 424-430, https://doi.org/10.3109/15563650.2010.486381.

[9]

J.L. Green, K.J. Heard, K.M. Reynolds, D. Albert, Oral and intravenous acetylcysteine for treatment of acetaminophen toxicity: a systematic review and meta-analysis, West. J. Emerg. Med. 14 (2013) 218-226, https://doi.org/10.5811/westjem.2012.4.6885.

[10]

A. Ramachandran, H. Jaeschke, Acetaminophen toxicity: novel insights into mechanisms and future perspectives, Gene Expr. 18 (2018) 19-30, https://doi.org/10.3727/105221617X15084371374138.

[11]

J.A. Danquah, M. Appiah, A. Osman, A. Pappinen, Geographic distribution of global economic important mahogany complex: a review, Annu. Res. Rev. Biol. (2019) 1-22, https://doi.org/10.9734/arrb/2019/v34i330154.

[12]

T.O. Odugbemi, O.R. Akinsulire, I.E. Aibinu, P.O. Fabeku, Medicinal plants useful for malaria therapy in okeigbo, ondo state, southwest Nigeria, Afr. J. Tradit. Complement. Altern. Med. 4 (2006) 191-198.

[13]

J. Olowokudejo, A. Kadiri, V. Travih, An ethnobotanical survey of herbal markets and medicinal plants in lagos state of Nigeria, Ethnobot. Leafl. 12 (2008).

[14]

J.O. Adebayo, A.U. Krettli, Potential antimalarials from Nigerian plants: a review, J. Ethnopharmacol. 133 (2011) 289-302, https://doi.org/10.1016/j.jep.2010.11.024.

[15]

A. Fred-Jaiyesimi, K.K. Ajibesin, O. Tolulope, O. Gbemisola, Ethnobotanical studies of folklore phytocosmetics of South West Nigeria, Pharm. Biol. 53 (2015) 313-318, https://doi.org/10.3109/13880209.2014.918155.

[16]

F.N. Njayou, A.F. Kouam, B.F.N. Simo, A.N. Tchana, P.F. Moundipa, Active chemical fractions of stem bark extract of Khaya grandifoliola C. DC and Entada africana Guill. et Perr. synergistically protect primary rat hepatocytes against paracetamolinduced damage, BMC Complement. Altern. Med. 16 (2016) 190, https://doi.org/10.1186/s12906-016-1169-y.

[17]

Y.O. Mukaila, A.A.-N. Ajao, A.N. Moteetee, C.D.C. Khaya grandifoliola Meliaceae: sapindales: ethnobotany, phytochemistry, pharmacological properties and toxicology, J. Ethnopharmacol. 278 (2021) 114253, https://doi.org/10.1016/j.jep.2021.114253.

[18]

A.F. Kouam, F. Yuan, F.N. Njayou, H. He, R.F. Tsayem, B.O. Oladejo, F. Song, P.F. Moundipa, G.F. Gao, Induction of mkp-1 and nuclear translocation of Nrf2 by limonoids from Khaya grandifoliola C. DC protect L-02 hepatocytes against acetaminophen-induced hepatotoxicity, Front. Pharmacol. 8 (2017) 653, https://doi.org/10.3389/fphar.2017.00653.

[19]

B.R.T. Galani, M.-E. Sahuc, G. Sass, F.N. Njayou, C. Loscher, P. Mkounga, G. Deloison, P. Brodin, Y. Rouillé, G. Tiegs, K. Séron, P.F. Moundipa, Khaya grandifoliola C. DC: a potential source of active ingredients against hepatitis C virus in vitro, Arch. Virol. 161 (2016) 1169-1181, https://doi.org/10.1007/s00705-016-2771-5.

[20]

A.F. Kouam, M. Masso, F.E. Kouoh, R. Fifen, I. Njingou, A.N. Tchana, F.N. Njayou, P.F. Moundipa, Hydro-ethanolic extract of Khaya grandifoliola attenuates heavy metals-induced hepato-renal injury in rats by reducing oxidative stress and metalsbioaccumulation, Heliyon 8 (2022) e11685, https://doi.org/10.1016/j.heliyon.2022.e11685.

[21]

A.F. Kouam, F.N. Njayou, F. Yuan, B. Olawale, H. Hongtao, P. Mkounga, P.F. Moundipa, Inhibitory activity of limonoids from Khaya grandifoliola C. DC (Meliaceae) against hepatitis C virus infection in vitro, Avicenna J Phytomed 11 (14) (2021) 353-366, https://doi.org/10.22038/ajp.2020.17215.

[22]

F.N. Njayou, A.F. Kouam, B.F.N. Simo, A.N. Tchana, P.F. Moundipa, Active chemical fractions of stem bark extract of Khaya grandifoliola C. DC and Entada africana Guill. et Perr. synergistically protect primary rat hepatocytes against paracetamolinduced damage, BMC Complement. Altern. Med. 16 (2016), https://doi.org/10.1186/s12906-016-1169-y.

[23]

A. Fondjo Kouam, N.F. Njayou, F. Yuan, B.O. Oladejo, P. Mkounga, F. Song, P. Moundipa, Protective mechanisms of limonoids from Khaya grandifoliola against cisplatin-toxicity in L-02 hepatocytes: targeting JNK activation and nuclear translocation of Nrf2, Investig. Med. Chem. Pharmacol. 2 (2019) 1-10, https://doi.org/10.31183/imcp.2019.00024.

[24]

OECD, Test No. 425: Acute Oral Toxicity: Up-And-Down Procedure, Organisation for Economic Co-operation and Development, Paris, 2022, in: https://www.oecd-ilibrary.org/environment/test-no-425-acute-oral-toxicity-up-and-down-procedure_9789264071049-en.(Accessed5 June 2023).

[25]

A.G. Gornall, C.J. Bardawill, M.M. David, Determination of serum proteins by means of the biuret reaction, J. Biol. Chem. 177 (1949) 751-766.

[26]

A.F. Kouam, B.A. Owona, R. Fifen, F.N. Njayou, P.F. Moundipa, Inhibition of CYP2E1 and activation of Nrf2 signaling pathways by a fraction from Entada africana alleviate carbon tetrachloride-induced hepatotoxicity, Heliyon 6 (2020) e04602, https://doi.org/10.1016/j.heliyon.2020.e04602.

[27]

A. Claiborne, Catalase activity, in: MethodsOxyg. RadicRes.,CRC Press, 1985.

[28]

H.P. Misra, I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247 (1972) 3170-3175.

[29]

C.O. Ikediobi, V.L. Badisa, L.T. Ayuk-Takem, L.M. Latinwo, J. West, Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells, Int. J. Mol. Med. 14 (2004) 87-92.

[30]

J. Zheng, V.D. Ramirez, Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals, Br. J. Pharmacol. 130 (2000) 1115-1123, https://doi.org/10.1038/sj.bjp.0703397.

[31]

L. Xu, J. Gao, Y. Wang, W. Yu, X. Zhao, X. Yang, Z. Zhong, Z.-M. Qian, Myrica rubra extracts protect the liver from CCl4-induced damage, evid.-based complement, Altern. Med. ECAM 2011 (2011) 518302, https://doi.org/10.1093/ecam/nep196.

[32]

H. Jaeschke, T.R. Knight, M.L. Bajt, The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity, Toxicol. Lett. 144 (2003) 279-288, https://doi.org/10.1016/s0378-4274(03)00239-x.

[33]

H. Jaeschke, A. Ramachandran, Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity, React. Oxyg. Species 5 (2018) 145-158.

[34]

N. Munkong, K. Ruxsanawet, V. Ariyabukalakorn, W. Mueangchang, S. Sangkham, P. Silangirn, A. Thim-uam, J. Naowaboot, N. Somparn, B. Yoysungnoen, Hepatoprotective effects of Elaeagnus latifolia fruit extract against acetaminopheninduced hepatotoxicity in mice: mechanistic insights, J. Funct. Foods 114 (2024) 106077, https://doi.org/10.1016/j.jff.2024.106077.

[35]

Z. Zhao, Q. Wei, W. Hua, Y. Liu, X. Liu, Y. Zhu, Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice, Biomed. Pharmacother. 103 (2018) 1319-1326, https://doi.org/10.1016/j.biopha.2018.04.175.

[36]

H. Jaeschke, O.B. Adelusi, J.Y. Akakpo, N.T. Nguyen, G. Sanchez-Guerrero, D.S. Umbaugh, W.-X. Ding, A. Ramachandran, Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls, Acta Pharm. Sin. B 11 (2021) 3740-3755, https://doi.org/10.1016/j.apsb.2021.09.023.

[37]

A. Ramachandran, H. Jaeschke, Oxidant stress and acetaminophen hepatotoxicity: mechanism-based drug development, Antioxid. Redox Signal. 35 (2021) 718-733, https://doi.org/10.1089/ars.2021.0102.

[38]

A. Eddaikra, N. Eddaikra, A. Eddaikra, N. Eddaikra, Endogenous enzymatic antioxidant defense and pathologies, in: Antioxid. - Benefits Sources Mech. Action, IntechOpen, 2021, https://doi.org/10.5772/intechopen.95504.

[39]

M.R. McGill, A. Ramachandran, H. Jaeschke, Oxidant stress and drug-induced hepatotoxicity, in:I. Laher (Ed.), Syst. Biol. Free Radic. Antioxid., Springer, Berlin, Heidelberg, 2014, pp. 1757-1785, https://doi.org/10.1007/978-3-642-30018-9_144.

[40]

S.K. Niture, J.W. Kaspar, J. Shen, A.K. Jaiswal, Nrf 2 signaling and cell survival, Toxicol. Appl. Pharmacol. 244 (2010) 37-42, https://doi.org/10.1016/j.taap.2009.06.009.

[41]

Y. Xie, M.R. McGill, K. Dorko, S.C. Kumer, T.M. Schmitt, J. Forster, H. Jaeschke, Mechanisms of acetaminophen-induced cell death in primary human hepatocytes, Toxicol. Appl. Pharmacol. 279 (2014) 266-274, https://doi.org/10.1016/j.taap.2014.05.010.

[42]

C. Saito, C. Zwingmann, H. Jaeschke, Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine, Hepatol. Baltim. Md 51 (2010) 246-254, https://doi.org/10.1002/hep.23267.

[43]

M.D. Brand, A.L. Orr, I.V. Perevoshchikova, C.L. Quinlan, The role of mitochondrial function and cellular bioenergetics in ageing and disease, Br. J. Dermatol. 169 (2013) 1-8, https://doi.org/10.1111/bjd.12208.

[44]

S. Guan, L. Zhao, R. Peng, Mitochondrial respiratory chain supercomplexes: from structure to function, Int. J. Mol. Sci. 23 (2022) 13880, https://doi.org/10.3390/ijms232213880.

[45]

A. Ghosh, P.C. Sil, Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-κB pathway: role of a novel plant protein, Chem. Biol. Interact. 177 (2009) 96-106, https://doi.org/10.1016/j.cbi.2008.09.006.

[46]

S.I. Ojeaburu, K. Oriakhi, Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats, Toxicol Rep 8 (2021) 177-185, https://doi.org/10.1016/j.toxrep.2021.01.001.

[47]

S. Miltonprabu, M. Tomczyk, K. Skalicka-Woźniak, L. Rastrelli, M. Daglia, S.F. Nabavi, S.M. Alavian, S.M. Nabavi, Hepatoprotective effect of quercetin: from chemistry to medicine, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 108 (2017) 365-374, https://doi.org/10.1016/j.fct.2016.08.034.

[48]

H. Kostek, J. Szponar, M. Tchórz, M. Majewska, H. Lewandowska-Stanek, [Silibinin and its hepatoprotective action from the perspective of a toxicologist], Przegl. Lek. 69 (2012) 541-543.

[49]

X. Zhao, J. Wang, Y. Deng, L. Liao, M. Zhou, C. Peng, Y. Li, Quercetin as a protective agent for liver diseases: a comprehensive descriptive review of the molecular mechanism, Phytother. Res. PTR 35 (2021) 4727-4747, https://doi.org/10.1002/ptr.7104.

[50]

Y. Li, N. Han, P. Hou, F.-Q. Zhao, H. Liu, Roles of MAPK and Nrf2 signaling pathways in quercetin alleviating redox imbalance induced by hydrogen peroxide in mammary epithelial cells, Anim. Nutr. 1 (2024) e1, https://doi.org/10.1017/anr.2024.2.

[51]

N. Vargas-Mendoza, Á. Morales-González, M. Morales-Martínez, M.A. Soriano- Ursúa, L. Delgado-Olivares, E.M. Sandoval-Gallegos, E. Madrigal-Bujaidar, I. Álvarez-González, E. Madrigal-Santillán, J.A. Morales-Gonzalez, Flavolignans from silymarin as Nrf2 bioactivators and their therapeutic applications, Biomedicines 8 (2020) 122, https://doi.org/10.3390/biomedicines8050122.

[52]

C.E. Aruwa, Y.O. Mukaila, A.A.-N. Ajao, S. Sabiu, An appraisal of antidotes' effectiveness: evidence of the use of phyto-antidotes and biotechnological advancements, Mol. Basel Switz. 25 (2020) 1516, https://doi.org/10.3390/molecules25071516.

[53]

F.N. Njayou, A.M. Amougou, R. Fouemene Tsayem, J. Njikam Manjia, S. Rudraiah, B. Bradley, J.E. Manautou, P. Fewou Moundipa, Antioxidant fractions of Khaya grandifoliola C.DC. and Entada africana Guill. et Perr. induce nuclear translocation of Nrf 2 in HC-04 cells, Cell Stress Chaperones 20 (2015) 991-1000, https://doi.org/10.1007/s12192-015-0628-6.

AI Summary AI Mindmap
PDF (3068KB)

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/