Targeted drug conjugates in cancer therapy: Challenges and opportunities

Geng Jia , Yuqi Jiang , Xiaoyang Li

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100048

PDF (2918KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100048 DOI: 10.1016/j.pscia.2024.100048
Review Article
research-article

Targeted drug conjugates in cancer therapy: Challenges and opportunities

Author information +
History +
PDF (2918KB)

Abstract

Traditional chemotherapy is often accompanied by off-target toxicity, resulting in adverse side effects and driving the development of targeted therapies. Targeted drug conjugates (TDCs) typically comprise targeting ligands, such as specific antibodies, peptides, or small molecules, attached to a cytotoxic agent via a chemical linker. In this study, we briefly discussed the molecular aspects of the key components of TDCs and the mechanisms by which these key factors exert their activity. Moreover, we reviewed FDA-approved TDCs and promising candidates in clinical trials and discussed current challenges and future directions for TDC development, providing insights for the research and development of novel cancer therapeutics using TDCs. TDCs combine the advantages of highly specific targeting and a potent killing effect, enabling accurate and efficient cancer cell elimination. Food and Drug Administration (FDA)-approved antibody-drug conjugates (ADCs) have shown good efficacy in treating various cancers; however, they still present limitations such as immunogenicity, hematotoxicity, and complex pharmacokinetics. Smaller peptide-drug conjugates (PDCs) and small molecule-drug conjugates (SMDCs) may combine the advantages of ADCs while overcoming some of their limitations, thereby presenting more efficacious and safer alternatives. TDCs enhance the therapeutic effects of cytotoxic agents and reduce their adverse effects. However, tumor heterogeneity, limited transmembrane permeability, and drug resistance pose significant challenges for TDCs, potentially affecting their therapeutic efficacy. Nevertheless, TDCs are a promising therapeutic approach for cancer treatment, achieving precise drug delivery while minimizing toxicity and side effects on normal cells.

Keywords

Antibody-drug conjugate / Peptide-drug conjugate / Small molecule-drug conjugate / Tumor / Targeted therapy

Cite this article

Download citation ▾
Geng Jia, Yuqi Jiang, Xiaoyang Li. Targeted drug conjugates in cancer therapy: Challenges and opportunities. Pharmaceutical Science Advances, 2024, 2(1): 100048 DOI:10.1016/j.pscia.2024.100048

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

This work was supported by the Taishan Scholars Program (tsqn202211296), Fundamental Research Funds for the Central Universities Ocean University of China, and Science Foundation for Excellent Young Scholars of Shandong Province (ZR2023YQ062).

Declaration of generative AI in scientific writing

In the preparation of this work, no generative AI tools or services were utilized for drafting, editing, or revising the content. All analysis, and writing were conducted solely by the authors, ensuring the integrity and originality of the work presented.

CRediT authorship contribution statement

Geng Jia: Writing - original draft, Resources. Yuqi Jiang: Writing - review & editing. Xiaoyang Li: Writing - review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Acknowledgments

Graphic materials were provided by Figdraw (www.figdraw.com), and part of the drawing work was completed in PowerPoint.

References

[1]

G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov. 5 (3) (2006) 219-234, https://doi.org/10.1038/nrd1984.

[2]

C. Lindley, J.S. McCune, T.E. Thomason, D. Lauder, A. Sauls, S. Adkins, W.T. Sawyer, Perception of chemotherapy side effects cancer versus noncancer patients, Cancer Pract 7 (2) (1999) 59-65, https://doi.org/10.1046/j.1523-5394.1999.07205.x.

[3]

A.A. van der Veldt, M. Lubberink, R.H. Mathijssen, W.J. Loos, G.J. Herder, H.N. Greuter, E.F. Comans, H.B. Rutten, J. Eriksson, A.D. Windhorst, N.H. Hendrikse, P.E. Postmus, E.F. Smit, A.A. Lammertsma, Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [(1)(1)C]docetaxel and positron emission tomography, Clin. Cancer Res. 19 (15) (2013) 4163-4173, https://doi.org/10.1158/1078-0432.CCR-12-3779.

[4]

Z. Fu, S. Li, S. Han, C. Shi, Y. Zhang, Antibody drug conjugate: the “biological missile” for targeted cancer therapy, Signal Transduct. Targeted Ther. 7 (1) (2022) 93, https://doi.org/10.1038/s41392-022-00947-7.

[5]

L. Gong, H. Zhao, Y. Liu, H. Wu, C. Liu, S. Chang, L. Chen, M. Jin, Q. Wang, Z. Gao, W. Huang, Research advances in peptide-drug conjugates, Acta Pharm. Sin. B 13 (9) (2023) 3659-3677, https://doi.org/10.1016/j.apsb.2023.02.013.

[6]

J. Zhang, F. Hu, O. Aras, Y. Chai, F. An, Small molecule-drug conjugates: opportunities for the development of targeted anticancer drugs, ChemMedChem 19 (11) (2024) e202300720, https://doi.org/10.1002/cmdc.202300720.

[7]

E.L. Sievers, P.D. Senter, Antibody-drug conjugates in cancer therapy, Annu. Rev. Med. 64 (2013) 15-29, https://doi.org/10.1146/annurev-med-050311-201823.

[8]

C. Ceci, P.M. Lacal, G. Graziani, Antibody-drug conjugates: resurgent anticancer agents with multi-targeted therapeutic potential, Pharmacol. Ther. 236 (2022) 108106, https://doi.org/10.1016/j.pharmthera.2021.108106.

[9]

K. Liu, M. Li, Y. Li, Y. Li, Z. Chen, Y. Tang, M. Yang, G. Deng, H. Liu, A review of the clinical efficacy of FDA-approved antibody-drug conjugates in human cancers, Mol. Cancer 23 (1) (2024) 62, https://doi.org/10.1186/s12943-024-01963-7.

[10]

Y. Wang, A.G. Cheetham, G. Angacian, H. Su, L. Xie, H. Cui, Peptide-drug conjugates as effective prodrug strategies for targeted delivery, Adv. Drug Deliv. Rev. 110-111 (2017) 112-126, https://doi.org/10.1016/j.addr.2016.06.015.

[11]

G. Casi, D. Neri, Antibody-drug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents, J. Med. Chem. 58 (22) (2015) 8751-8761, https://doi.org/10.1021/acs.jmedchem.5b00457.

[12]

K.H. Altmann, Tumor targeting with small molecule-drug conjugates (SMDCs) - can they be better than ADCs? Chimia 72 (3) (2018) 154-155, https://doi.org/10.2533/chimia.2018.154.

[13]

M.F. Lee, C.L. Poh, Strategies to improve the physicochemical properties of peptide-based drugs, Pharm. Res. ( N. Y.) 40 (3) (2023) 617-632, https://doi.org/10.1007/s11095-023-03486-0.

[14]

C. Zhuang, X. Guan, H. Ma, H. Cong, W. Zhang, Z. Miao, Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment, Eur. J. Med. Chem. 163 (2019) 883-895, https://doi.org/10.1016/j.ejmech.2018.12.035.

[15]

B. Nolting, Linker technologies for antibody-drug conjugates, Methods Mol. Biol. 1045 (2013) 71-100, https://doi.org/10.1007/978-1-62703-541-5_5.

[16]

D. O’Mahony, M.R. Bishop, Monoclonal antibody therapy, Front. Biosci. 11 (2006) 1620-1635, https://doi.org/10.2741/1909.

[17]

P. Hoppenz, S. Els-Heindl, A.G. Beck-Sickinger, Peptide-drug conjugates and their targets in advanced cancer therapies, Front. Chem. 8 (2020), https://doi.org/10.3389/fchem.2020.00571.

[18]

Y.V. Kovtun, V.S. Goldmacher, Cell killing by antibody-drug conjugates, Cancer Lett 255 (2) (2007) 232-240, https://doi.org/10.1016/j.canlet.2007.04.010.

[19]

S.D. Conner, S.L. Schmid, Regulated portals of entry into the cell, Nature 422 (6927) (2003) 37-44, https://doi.org/10.1038/nature01451.

[20]

S. Panowski, S. Bhakta, H. Raab, P. Polakis, J.R. Junutula, Site-specific antibody drug conjugates for cancer therapy, mAbs 6 (1) (2014) 34-45, https://doi.org/10.4161/mabs.27022.

[21]

C. Peters, S. Brown, Antibody-drug conjugates as novel anti-cancer chemotherapeutics, Biosci. Rep. 35 (2015), https://doi.org/10.1042/BSR20150089.

[22]

D.C. Roopenian, S. Akilesh, FcRn: the neonatal Fc receptor comes of age, Nat. Rev. Immunol. 7 (9) (2007) 715-725, https://doi.org/10.1038/nri2155.

[23]

J. Borvak, J. Richardson, C. Medesan, F. Antohe, C. Radu, M. Simionescu, V. Ghetie, E.S. Ward, Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice, Int. Immunol. 10 (9) (1998) 1289-1298, https://doi.org/10.1093/intimm/10.9.1289.

[24]

M. Ritchie, L. Tchistiakova, N. Scott, Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates, mAbs 5 (1) (2013) 13-21, https://doi.org/10.4161/mabs.22854.

[25]

Y. Wang, Z.H. Tian, D. Thirumalai, X.Y. Zhang, Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering, J. Drug Target. 22 (4) (2014) 269-278, https://doi.org/10.3109/1061186X.2013.875030.

[26]

T.E. Rusten, T. Vaccari, H. Stenmark, Shaping development with ESCRTs, Nat. Cell Biol. 14 (1) (2012) 38-45, https://doi.org/10.1038/ncb2381.

[27]

M. Kalim, J. Chen, S.H. Wang, C.Y. Lin, S. Ullah, K.Y. Liang, Q. Ding, S.Q. Chen, J.B. Zhan, Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates, Drug Des. Dev. Ther. 11 (2017) 2265-2276, https://doi.org/10.2147/DDDT.S135571.

[28]

C. Chalouni, S. Doll, Fate of antibody-drug conjugates in cancer cells, J. Exp. Clin. Cancer Res. 37 (2018), https://doi.org/10.1186/s13046-017-0667-1.

[29]

W.D. Hedrich, T.E. Fandy, H.M. Ashour, H.B. Wang, H.E. Hassan, Antibody-drug conjugates: pharmacokinetic/pharmacodynamic modeling, preclinical characterization, clinical studies, and lessons learned, Clin. Pharmacokinet. 57 (6) (2018) 687-703, https://doi.org/10.1007/s40262-017-0619-0.

[30]

E. Capone, A. Lamolinara, D. D’Agostino, C. Rossi, V. De Laurenzi, M. Iezzi, S. Iacobelli, G. Sala, EV20-mediated delivery of cytotoxic auristatin MMAF exhibits potent therapeutic efficacy in cutaneous melanoma, J. Contr. Release 277 (2018) 48-56, https://doi.org/10.1016/j.jconrel.2018.03.016.

[31]

G.J.L. Bernardes, G. Casi, S. Trussel, I. Hartmann, K. Schwager, J. Scheuermann, D. Neri, A traceless vascular-targeting antibody-drug conjugate for cancer therapy, Angew. Chem., Int. Ed. 51 (4) (2012) 941-944, https://doi.org/10.1002/anie.201106527.

[32]

A.H. Staudacher, M.P. Brown, Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117 (12) (2017) 1736-1742, https://doi.org/10.1038/bjc.2017.367.

[33]

R.V.J. Chari, M.L. Miller, W.C. Widdison, Antibody- drug conjugates: an emerging concept in cancer therapy, Angew. Chem., Int. Ed. 53 (15) (2014) 3796-3827, https://doi.org/10.1002/anie.201307628.

[34]

A. Beck, L. Goetsch, C. Dumontet, N. Corvaia, Strategies and challenges for the next generation of antibody drug conjugates, Nat. Rev. Drug Discov. 16 (5) (2017) 315-337, https://doi.org/10.1038/nrd.2016.268.

[35]

G.M. Thurber, M.M. Schmidt, K.D. Wittrup, Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance, Adv. Drug Deliv. Rev. 60 (12) (2008) 1421-1434, https://doi.org/10.1016/j.addr.2008.04.012.

[36]

N.K. Damle, P. Frost, Antibody-targeted chemotherapy with immunoconjugates of calicheamicin, Curr. Opin. Pharmacol. 3 (4) (2003) 386-390, https://doi.org/10.1016/S1471-4892(03)00083-3.

[37]

D. Schrama, R.A. Reisfeld, J.C. Becker, Antibody targeted drugs as cancer therapeutics, Nat. Rev. Drug Discov. 5 (2) (2006) 147-159, https://doi.org/10.1038/nrd1957.

[38]

W. Wang, E.Q. Wang, J.P. Balthasar, Monoclonal antibody pharmacokinetics and pharmacodynamics, Clin. Pharmacol. Ther. 84 (5) (2008) 548-558, https://doi.org/10.1038/clpt.2008.170.

[39]

J.R. McCombs, S.C. Owen, Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry, AAPS J 17 (2) (2015) 339-351, https://doi.org/10.1208/s12248-014-9710-8.

[40]

B.A. Teicher, R.V.J. Chari, Antibody conjugate therapeutics: challenges and potential, Clin. Cancer Res. 17 (20) (2011) 6389-6397, https://doi.org/10.1158/1078-0432.CCR-11-1417.

[41]

R. Gebleux, G. Casi, Antibody-drug conjugates: current status and future perspectives, Pharmacol. Therapeut. 167 (2016) 48-59, https://doi.org/10.1016/j.pharmthera.2016.07.012.

[42]

B. Wiggins, L. Liu-Shin, H. Yamaguchi, G. Ratnaswamy, Characterization of cysteine-linked conjugation profiles of immunoglobulin G1 and immunoglobulin G2 antibody-drug conjugates, J Pharm Sci-Us 104 (4) (2015) 1362-1372, https://doi.org/10.1002/jps.24338.

[43]

E.M. Yoo, L.A. Wims, L.A. Chan, S.L. Morrison, Human IgG2 can form covalent dimers, J. Immunol. 170 (6) (2003) 3134-3138, https://doi.org/10.4049/jimmunol.170.6.3134.

[44]

J.G. Salfeld, Isotype selection in antibody engineering, Nat. Biotechnol. 25 (12) (2007) 1369-1372, https://doi.org/10.1038/nbt1207-1369.

[45]

O. Vafa, G.L. Gilliland, R.J. Brezski, B. Strake, T. Wilkinson, E.R. Lacy, B. Scallon, A. Teplyakov, T.J. Malia, W.R. Strohl, An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations, Methods 65 (1) (2014) 114-126, https://doi.org/10.1016/j.ymeth.2013.06.035.

[46]

M.V. Kolfschoten, J. Schuurman, M. Losen, W.K. Bleeker, P. Martinez-Martinez, E. Vermeulen, T.H. den Bleker, L. Wiegman, T. Vink, L.A. Aarden, M.H. De Baets, J.G.J. van De Winkel, R.C. Aalberse, P.W.H.I. Parren, Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange, Science 317 (5844) (2007) 1554-1557, https://doi.org/10.1126/science.1144603.

[47]

E. Nicolo, F. Giugliano, L. Ascione, P. Tarantino, C. Corti, S.M. Tolaney, M. Cristofanilli, G. Curigliano, Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives, Cancer Treat Rev 106 (2022) 102395, https://doi.org/10.1016/j.ctrv.2022.102395.

[48]

M. Bauzon, P.M. Drake, R.M. Barfield, B.M. Cornali, I. Rupniewski, D. Rabuka, Maytansine-bearing antibody-drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells, OncoImmunology 8 (4) (2019) e1565859, https://doi.org/10.1080/2162402X.2019.1565859.

[49]

J. Rios-Doria, J. Harper, R. Rothstein, L. Wetzel, J. Chesebrough, A. Marrero, C. Chen, P. Strout, K. Mulgrew, K. McGlinchey, R. Fleming, B. Bezabeh, J. Meekin, D. Stewart, M. Kennedy, P. Martin, A. Buchanan, N. Dimasi, E. Michelotti, R. Hollingsworth, Antibody-drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies, Cancer Res 77 (10) (2017) 2686-2698, https://doi.org/10.1158/0008-5472.CAN-16-2854.

[50]

K. Martin, P. Muller, J. Schreiner, S.S. Prince, D. Lardinois, V.A. Heinzelmann- Schwarz, D.S. Thommen, A. Zippelius, The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity, Cancer Immunol. Immunother. 63 (9) (2014) 925-938, https://doi.org/10.1007/s00262-014-1565-4.

[51]

S. Baah, M. Laws, K.M. Rahman, Antibody-drug conjugates-A tutorial review, Molecules 26 (10) (2021), https://doi.org/10.3390/molecules26102943.

[52]

C. Taylor, D. Hershman, N. Shah, N. Suciu-Foca, D.P. Petrylak, R. Taub, L. Vahdat, B. Cheng, M. Pegram, K.L. Knutson, R. Clynes, Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy, Clin. Cancer Res. 13 (17) (2007) 5133-5143, https://doi.org/10.1158/1078-0432.ccr-07-0507.

[53]

A. Esparis-Ogando, J.C. Montero, J. Arribas, A. Ocana, A. Pandiella, Targeting the EGF/HER ligand-receptor system in cancer, Curr. Pharmaceut. Des. 22 (39) (2016) 5887-5898, https://doi.org/10.2174/1381612822666160715132233.

[54]

J. Andreev, N. Thambi, A.E.P. Bay, F. Delfino, J. Martin, M.P. Kelly, J.R. Kirshner, A. Rafique, A. Kunz, T. Nittoli, D. MacDonald, C. Daly, W. Olson, G. Thurston, Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs, Mol. Cancer Therapeut. 16 (4) (2017) 681-693, https://doi.org/10.1158/1535-7163.MCT-16-0658.

[55]

N. Goli, P.K. Bolla, V. Talla, Antibody-drug conjugates (ADCs): potent biopharmaceuticals to target solid and hematological cancers- an overview, J. Drug Deliv. Sci. Technol. 48 (2018) 106-117, https://doi.org/10.1016/j.jddst.2018.08.022.

[56]

J.D. Bargh, A. Isidro-Llobet, J.S. Parker, D.R. Spring, Cleavable linkers in antibodydrug conjugates, Chem. Soc. Rev. 48 (16) (2019) 4361-4374, https://doi.org/10.1039/C8CS00676H.

[57]

A. Beck, L. Goetsch, C. Dumontet, et al., Strategies and challenges for the next generation of antibody-drug conjugates, Nat. Rev. Drug. Discov. 16 (2017) 315-337, https://doi.org/10.1038/nrd.2016.268.

[58]

H.L. Perez, P.M. Cardarelli, S. Deshpande, S. Gangwar, G.M. Schroeder, G.D. Vite, R.M. Borzilleri, Antibody-drug conjugates: current status and future directions, Drug Discov. Today 19 (7) (2014) 869-881, https://doi.org/10.1016/j.drudis.2013.11.004.

[59]

J. Lu, F. Jiang, A.P. Lu, G. Zhang, Linkers having a crucial role in antibody-drug conjugates, Int. J. Mol. Sci. 17 (4) (2016), https://doi.org/10.3390/ijms17040561.

[60]

R.Y. Zhao, S.D. Wilhelm, C. Audette, G. Jones, B.A. Leece, A.C. Lazar, V.S. Goldmacher, R. Singh, Y. Kovtun, W.C. Widdison, J.M. Lambert, R.V.J. Chari, Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates, J. Med. Chem. 54 (10) (2011) 3606-3623, https://doi.org/10.1021/jm2002958.

[61]

H.K. Erickson, P.U. Park, W.C. Widdison, Y.V. Kovtun, L.M. Garrett, K. Hoffman, R.J. Lutz, V.S. Goldmacher, W.A. Blattler, Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing, Cancer Res. 66 (8) (2006) 4426-4433, https://doi.org/10.1158/0008-5472.Can-05-4489.

[62]

M. Dorywalska, P. Strop, J.A. Melton-Witt, A. Hasa-Moreno, S.E. Farias, M.G. Casas, K. Delaria, V. Lui, K. Poulsen, C. Loo, S. Krimm, G. Bolton, L. Moine, R. Dushin, T.T. Tran, S.H. Liu, M. Rickert, D. Foletti, D.L. Shelton, J. Pons, A. Rajpal, Effect of attachment site on stability of cleavable antibody drug conjugates, Bioconjugate Chem. 26 (4) (2015) 650-659, https://doi.org/10.1021/bc5005747.

[63]

B.C. Laguzza, C.L. Nichols, S.L. Briggs, G.J. Cullinan, D.A. Johnson, J.J. Starling, A.L. Baker, T.F. Bumol, J.R. Corvalan, New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity, J. Med. Chem. 32 (3) (1989) 548-555, https://doi.org/10.1021/jm00123a007.

[64]

S.J. Moon, S.V. Govindan, T.M. Cardillo, C.A. D’Souza, H.J. Hansen, D.M. Goldenberg, Antibody conjugates of 7-Ethyl-10-hydroxycamptothecin (SN- 38) for targeted cancer chemotherapy, J. Med. Chem. 51 (21) (2008) 6916-6926, https://doi.org/10.1021/jm800719t.

[65]

T.H. Pillow, J.D. Sadowsky, D.L. Zhang, S.F. Yu, G. Del Rosario, K.Y. Xu, J.T. He, S. Bhakta, R. Ohri, K.R. Kozak, E. Ha, J.R. Junutula, J.A. Flygare, Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates, Chem. Sci. 8 (1) (2017) 366-370, https://doi.org/10.1039/c6sc01831a.

[66]

B.L. Wu, G.M. Zhang, S.M. Shuang, M.M.F. Choi, Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane, Talanta 64 (2) (2004) 546-553, https://doi.org/10.1016/j.talanta.2004.03.050.

[67]

G.Y. Wu, Y.Z. Fang, S. Yang, J.R. Lupton, N.D. Turner, Glutathione metabolism and its implications for health, J. Nutr. 134 (3) (2004) 489-492, https://doi.org/10.1093/jn/134.3.489.

[68]

G.K. Balendiran, R. Dabur, D. Fraser, The role of glutathione in cancer, Cell Biochem. Funct. 22 (6) (2004) 343-352, https://doi.org/10.1002/cbf.1149.

[69]

M. Murphy, S. Phinney, O. Ab, M. Mayo, K. Whiteman, R. Lutz, G. Payne, Immunohistochemical analysis of the glycotope targeted by huC242-DM4 indicates strong expression in several tumor types with unmet medical need, Cancer Res. 68 (9) (2008).

[70]

G.M. Dubowchik, K. Mosure, J.O. Knipe, R.A. Firestone, Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin, Bioorg. Med. Chem. Lett 8 (23) (1998) 3347-3352, https://doi.org/10.1016/s0960-894x(98)00610-6.

[71]

S.O. Doronina, B.E. Toki, M.Y. Torgov, B.A. Mendelsohn, C.G. Cerveny, D.F. Chace, R.L. DeBlanc, R.P. Gearing, T.D. Bovee, C.B. Siegall, J.A. Francisco, A.F. Wahl, D.L. Meyer, P.D. Senter, Development of potent monoclonal antibody auristatin conjugates for cancer therapy, Nat. Biotechnol. 21 (7) (2003) 778-784, https://doi.org/10.1038/nbt832.

[72]

I. Tranoy-Opalinski, T. Legigan, R. Barat, J. Clarhaut, M. Thomas, B. Renoux, S. Papot, beta-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update, Eur. J. Med. Chem. 74 (2014) 302-313, https://doi.org/10.1016/j.ejmech.2013.12.045.

[73]

R.P. Lyon, T.D. Bovee, S.O. Doronina, P.J. Burke, J.H. Hunter, H.D. Neff-LaFord, M. Jonas, M.E. Anderson, J.R. Setter, P.D. Senter, Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index, Nat. Biotechnol. 33 (7) (2015) 733-735, https://doi.org/10.1038/nbt.3212.

[74]

S. Kolodych, C. Michel, S. Delacroix, O. Koniev, A. Ehkirch, J. Eberova, S. Cianferani, B. Renoux, W. Krezel, P. Poinot, C.D. Muller, S. Papot, A. Wagner, Development and evaluation of beta-galactosidase-sensitive antibody-drug conjugates, Eur. J. Med. Chem. 142 (2017) 376-382, https://doi.org/10.1016/j.ejmech.2017.08.008.

[75]

R.V. Chari, M.L. Miller, W.C. Widdison, Antibody-drug conjugates: an emerging concept in cancer therapy, Angew Chem. Int. Ed. Engl. 53 (15) (2014) 3796-3827, https://doi.org/10.1002/anie.201307628.

[76]

N. Parker, M.J. Turk, E. Westrick, J.D. Lewis, P.S. Low, C.P. Leamon, Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Anal. Biochem. 338 (2) (2005) 284-293, https://doi.org/10.1016/j.ab.2004.12.026.

[77]

L. Shefet-Carasso, I. Benhar, Antibody-targeted drugs and drug resistance- challenges and solutions, Drug Resist. Updates 18 (2015) 36-46, https://doi.org/10.1016/j.drup.2014.11.001.

[78]

N. Diamantis, U. Banerji, Antibody-drug conjugates-an emerging class of cancer treatment, Br. J. Cancer 114 (4) (2016) 362-367, https://doi.org/10.1038/bjc.2015.435.

[79]

G. Moldenhauer, A.V. Salnikov, S. Luttgau, I. Herr, J. Anderl, H. Faulstich, Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma, J. Natl. Cancer Inst. 104 (8) (2012) 622-634, https://doi.org/10.1093/jnci/djs140.

[80]

W.I. Lencer, R.S. Blumberg, A. passionate kiss, Then run: exocytosis and recycling of IgG by FcRn, Trends Cell Biol. 15 (1) (2005) 5-9, https://doi.org/10.1016/j.tcb.2004.11.004.

[81]

H. Chen, Z. Lin, K.E. Arnst, D.D. Miller, W. Li, Tubulin inhibitor-based antibodydrug conjugates for cancer therapy, Molecules 22 (8) (2017), https://doi.org/10.3390/molecules22081281.

[82]

Y.T. Tai, P.A. Mayes, C. Acharya, M.Y. Zhong, M. Cea, A. Cagnetta, J. Craigen, J. Yates, L. Gliddon, W. Fieles, B. Hoang, J. Tunstead, A.L. Christie, A.L. Kung, P. Richardson, N.C. Munshi, K.C. Anderson, Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma, Blood 123 (20) (2014) 3128-3138, https://doi.org/10.1182/blood-2013-10-535088.

[83]

S. Banerjee, Z. Wang, M. Mohammad, F.H. Sarkar, R.M. Mohammad, Efficacy of selected natural products as therapeutic agents against cancer, J. Nat. Prod. 71 (3) (2008) 492-496, https://doi.org/10.1021/np0705716.

[84]

S.O. Doronina, B.A. Mendelsohn, T.D. Bovee, C.G. Cerveny, S.C. Alley, D.L. Meyer, E. Oflazoglu, B.E. Toki, R.J. Sanderson, R.F. Zabinski, A.F. Wahl, P.D. Senter, Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity, Bioconjugate Chem. 17 (1) (2006) 114-124, https://doi.org/10.1021/bc0502917.

[85]

J. Anderl, H. Faulstich, T. Hechler, M. Kulke, Antibody-drug conjugate payloads, Methods Mol. Biol. 1045 (2013) 51-70, https://doi.org/10.1007/978-1-62703-541-5_4.

[86]

J.T.W. Tong, P.W.R. Harris, M.A. Brimble, I. Kavianinia, An insight into FDA approved antibody-drug conjugates for cancer therapy, Molecules 26 (19) (2021), https://doi.org/10.3390/molecules26195847.

[87]

E. Oroudjev, M. Lopus, L. Wilson, C. Audette, C. Provenzano, H. Erickson, Y. Kovtun, R. Chari, M.A. Jordan, Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability, Mol. Cancer Therapeut. 9 (10) (2010) 2700-2713, https://doi.org/10.1158/1535-7163.MCT-10-0645.

[88]

E. Wagner-Rousset, M.C. Janin-Bussat, O. Colas, M. Excoffier, D. Ayoub, J.F. Haeuw, I. Rilatt, M. Perez, N. Corvaia, A. Beck, Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion, mAbs 6 (1) (2014) 273-285, https://doi.org/10.4161/mabs.26773.

[89]

G.D. Lewis Phillips, G. Li, D.L. Dugger, L.M. Crocker, K.L. Parsons, E. Mai, W.A. Blattler, J.M. Lambert, R.V. Chari, R.J. Lutz, W.L. Wong, F.S. Jacobson, H. Koeppen, R.H. Schwall, S.R. Kenkare-Mitra, S.D. Spencer, M.X. Sliwkowski, Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibodycytotoxic drug conjugate, Cancer Res 68 (22) (2008) 9280-9290, https://doi.org/10.1158/0008-5472.CAN-08-1776.

[90]

Y. Fu, M. Ho, DNA damaging agent-based antibody-drug conjugates for cancer therapy, Antib.Ther. 1 (2) (2018) 33-43, https://doi.org/10.1093/abt/tby007.

[91]

E.R. Kastenhuber, S.W. Lowe, Putting p53 in context, Cell 170 (6) (2017) 1062-1078, https://doi.org/10.1016/j.cell.2017.08.028.

[92]

M. Maugeri-Sacca, M. Bartucci, R. De Maria, DNA damage repair pathways in cancer stem cells, Mol. Cancer Therapeut. 11 (8) (2012) 1627-1636, https://doi.org/10.1158/1535-7163.MCT-11-1040.

[93]

S. Ponziani, G. Di Vittorio, G. Pitari, A.M. Cimini, M. Ardini, R. Gentile, S. Iacobelli, G. Sala, E. Capone, D.J. Flavell, R. Ippoliti, F. Giansanti, Antibodydrug conjugates: the new frontier of chemotherapy, Int. J. Mol. Sci. 21 (15) (2020), https://doi.org/10.3390/ijms21155510.

[94]

D. Antonow, D.E. Thurston,Synthesis of DNA-interactive pyrrolo[2,1-c][1,4] benzodiazepines (PBDs), Chem. Rev. 111 (4) (2011) 2815-2864, https://doi.org/10.1021/cr100120f.

[95]

E.A. Crane, K. Gademann, Capturing biological activity in natural product fragments by chemical synthesis, Angew Chem. Int. Ed. Engl. 55 (12) (2016) 3882-3902, https://doi.org/10.1002/anie.201505863.

[96]

L.F. Tietze, K. Schmuck, Prodrugs for targeted tumor therapies: recent developments in ADEPT, GDEPT and PMT, Curr. Pharmaceut. Des. 17 (32) (2011) 3527-3547, https://doi.org/10.2174/138161211798194459.

[97]

R.C. Elgersma, R.G. Coumans, T. Huijbregts, W.M. Menge, J.A. Joosten, H.J. Spijker, F.M. de Groot, M.M. van der Lee, R. Ubink, D.J. van den Dobbelsteen, D.F. Egging, W.H. Dokter, G.F. Verheijden, J.M. Lemmens, C.M. Timmers, P.H. Beusker, Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985, Mol. Pharm. 12 (6) (2015) 1813-1835, https://doi.org/10.1021/mp500781a.

[98]

Z.W. Fu, S.J. Li, S.F. Han, C. Shi, Y. Zhang, Antibody drug conjugate: the “biological missile” for targeted cancer therapy, Signal Transduct Tar 7 (1) (2022), https://doi.org/10.1038/s41392-022-00947-7.

[99]

C. Ceci, P.M. Lacal, G. Graziani, Antibody-drug Conjugates: Resurgent Anticancer Agents with Multi-Targeted Therapeutic Potential, Pharmacol Therapeut 236 (2022), https://doi.org/10.1016/j.pharmthera.2021.108106.

[100]

K. Naito, A. Takeshita, K. Shigeno, S. Nakamura, S. Fujisawa, K. Shinjo, H. Yoshida, K. Ohnishi, M. Mori, S. Terakawa, R. Ohno, Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on Pglycoprotein- expressing sublines, Leukemia 14 (8) (2000) 1436-1443, https://doi.org/10.1038/sj.leu.2401851.

[101]

P. Neumeister, M. Eibl, W. Zinke-Cerwenka, M. Scarpatetti, H. Sill, W. Linkesch, Hepatic veno-occlusive disease in two patients with relapsed acute myeloid leukemia treated with anti-CD33 calicheamicin (CMA-676) immunoconjugate, Ann. Hematol. 80 (2) (2001) 119-120, https://doi.org/10.1007/s002770000239.

[102]

D.K. Tack, L. Letendre, P.S. Kamath, A. Tefferi, Development of hepatic venoocclusive disease after Mylotarg infusion for relapsed acute myeloid leukemia, Bone Marrow Transplant 28 (9) (2001) 895-897, https://doi.org/10.1038/sj.bmt.1703242.

[103]

K.J. Norsworthy, C.W. Ko, J.E. Lee, J. Liu, C.S. John, D. Przepiorka, A.T. Farrell, R. Pazdur, FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia, Oncol 23 (9) (2018) 1103-1108, https://doi.org/10.1634/theoncologist.2017-0604.

[104]

J. Baron, E.S. Wang, Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia, Expet Rev. Clin. Pharmacol. 11 (6) (2018) 549-559, https://doi.org/10.1080/17512433.2018.1478725.

[105]

A. Wolska-Washer, T. Robak, Safety and tolerability of antibody-drug conjugates in cancer, Drug Saf 42 (2) (2019) 295-314, https://doi.org/10.1007/s40264-018-0775-7.

[106]

J.A. Dowell, J. Korth-Bradley, H.J. Liu, S.P. King, M.S. Berger, Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse, J. Clin. Pharmacol. 41 (11) (2001) 1206-1214, https://doi.org/10.1177/00912700122012751.

[107]

R.A. de Claro, K. McGinn, V. Kwitkowski, J. Bullock, A. Khandelwal, B. Habtemariam, Y. Ouyang, H. Saber, K. Lee, K. Koti, M. Rothmann, M. Shapiro, F. Borrego, K. Clouse, X.H. Chen, J. Brown, L. Akinsanya, R. Kane, E. Kaminskas, A. Farrell, R. Pazdur, U.S. Food and Drug Administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma, Clin. Cancer Res. 18 (21) (2012) 5845-5849, https://doi.org/10.1158/1078-0432.CCR-12-1803.

[108]

J.A. Francisco, C.G. Cerveny, D.L. Meyer, B.J. Mixan, K. Klussman, D.F. Chace, S.X. Rejniak, K.A. Gordon, R. DeBlanc, B.E. Toki, C.L. Law, S.O. Doronina, C.B. Siegall, P.D. Senter, A.F. Wahl, cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity, Blood 102 (4) (2003) 1458-1465, https://doi.org/10.1182/blood-2003-01-0039.

[109]

A.H. Staudacher, M.P. Brown, Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117 (12) (2017) 1736-1742, https://doi.org/10.1038/bjc.2017.367.

[110]

D. Dornan, F. Bennett, Y. Chen, M. Dennis, D. Eaton, K. Elkins, D. French, M.A. Go, A. Jack, J.R. Junutula, H. Koeppen, J. Lau, J. McBride, A. Rawstron, X. Shi, N. Yu, S.F. Yu, P. Yue, B. Zheng, A. Ebens, A.G. Polson, Therapeutic potential of an anti- CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non- Hodgkin lymphoma, Blood 114 (13) (2009) 2721-2729, https://doi.org/10.1182/blood-2009-02-205500.

[111]

J.M. Burke, F. Morschhauser, D. Andorsky, C. Lee, J.P. Sharman, Antibody-drug conjugates for previously treated aggressive lymphomas: focus on polatuzumab vedotin, Expet Rev. Clin. Pharmacol. 13 (10) (2020) 1073-1083, https://doi.org/10.1080/17512433.2020.1826303.

[112]

B. Yu, D. Liu, Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma, J. Hematol. Oncol. 12 (1) (2019) 94, https://doi.org/10.1186/s13045-019-0786-6.

[113]

E. Khera, C. Cilliers, M.D. Smith, M.L. Ganno, K.C. Lai, T.A. Keating, A. Kopp, I. Nessler, A.O. Abu-Yousif, G.M. Thurber, Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping, Neoplasia 23 (2) (2021) 210-221, https://doi.org/10.1016/j.neo.2020.12.001.

[114]

L. Amiri-Kordestani, G.M. Blumenthal, Q.C. Xu, L. Zhang, S.W. Tang, L. Ha, W.C. Weinberg, B. Chi, R. Candau-Chacon, P. Hughes, A.M. Russell, S.P. Miksinski, X.H. Chen, W.D. McGuinn, T. Palmby, S.J. Schrieber, Q. Liu, J. Wang, P. Song, N. Mehrotra, L. Skarupa, K. Clouse, A. Al-Hakim, R. Sridhara, A. Ibrahim, R. Justice, R. Pazdur, P. Cortazar, FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer, Clin. Cancer Res. 20 (17) (2014) 4436-4441, https://doi.org/10.1158/1078-0432.CCR-14-0012.

[115]

J. Wynne, D. Wright, W. Stock, Inotuzumab: from preclinical development to success in B-cell acute lymphoblastic leukemia, Blood Adv. 3 (1) (2019) 96-104, https://doi.org/10.1182/bloodadvances.2018026211.

[116]

S. Modi, C. Saura, T. Yamashita, Y.H. Park, S.B. Kim, K. Tamura, F. Andre, H. Iwata, Y. Ito, J. Tsurutani, J. Sohn, N. Denduluri, C. Perrin, K. Aogi, E. Tokunaga, S.A. Im, K.S. Lee, S.A. Hurvitz, J. Cortes, C.L. Lee, S.Q. Chen, L. Zhang, J. Shahidi, A. Yver, I. Krop, D.-B. Investigators, Trastuzumab deruxtecan in previously treated HER2-positive breast cancer, N. Engl. J. Med. 382 (7) (2020) 610-621, https://doi.org/10.1056/NEJMoa1914510.

[117]

C. Esnault, D. Schrama, R. Houben, S. Guyetant, A. Desgranges, C. Martin, P. Berthon, M.C. Viaud-Massuard, A. Touze, T. Kervarrec, M. Samimi, Antibodydrug conjugates as an emerging therapy in oncodermatology, Cancers 14 (3) (2022), https://doi.org/10.3390/cancers14030778.

[118]

N. Joubert, A. Beck, C. Dumontet, C. Denevault-Sabourin, Antibody-drug conjugates: the last decade, Pharmaceuticals 13 (9) (2020), https://doi.org/10.3390/ph13090245.

[119]

C.S.B. Chia, A patent review on FDA-approved antibody-drug conjugates, their linkers and drug payloads, ChemMedChem 17 (11) (2022) e202200032, https://doi.org/10.1002/cmdc.202200032.

[120]

K.N. Moore, L.P. Martin, D.M. O’Malley, U.A. Matulonis, J.A. Konner, R.P. Perez, T.M. Bauer, R. Ruiz-Soto, M.J. Birrer, Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study, J. Clin. Oncol. 35 (10) (2017) 1112-1118, https://doi.org/10.1200/JCO.2016.69.9538.

[121]

U.A. Matulonis, D. Lorusso, A. Oaknin, S. Pignata, A. Dean, H. Denys, N. Colombo, T. Van Gorp, J.A. Konner, M.R. Marin, P. Harter, C.G. Murphy, J. Wang, E. Noble, B. Esteves, M. Method, R.L. Coleman, Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study, J. Clin. Oncol. 41 (13) (2023) 2436-2445, https://doi.org/10.1200/JCO.22.01900.

[122]

K.N. Moore, A.M. Oza, N. Colombo, A. Oaknin, G. Scambia, D. Lorusso, G.E. Konecny, S. Banerjee, C.G. Murphy, J.L. Tanyi, H. Hirte, J.A. Konner, P.C. Lim, M. Prasad-Hayes, B.J. Monk, P. Pautier, J. Wang, A. Berkenblit, I. Vergote, M.J. Birrer, Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I, Ann. Oncol. 32 (6) (2021) 757-765, https://doi.org/10.1016/j.annonc.2021.02.017.

[123]

D. Pooja, A. Gunukula, N. Gupta, D.J. Adams, H. Kulhari, Bombesin receptors as potential targets for anticancer drug delivery and imaging, Int. J. Biochem. Cell Biol. 114 (2019) 105567, https://doi.org/10.1016/j.biocel.2019.105567.

[124]

K.C. Tjandra, N. McCarthy, L. Yang, A.J. Laos, G. Sharbeen, P.A. Phillips, H. Forgham, S.M. Sagnella, R.M. Whan, M. Kavallaris, P. Thordarson, J.A. McCarroll, Identification of novel medulloblastoma cell-targeting peptides for use in selective chemotherapy drug delivery, J. Med. Chem. 63 (5) (2020) 2181-2193, https://doi.org/10.1021/acs.jmedchem.9b00851.

[125]

H. Yin, J. Yang, Q. Zhang, J. Yang, H. Wang, J. Xu, J. Zheng, iRGD as a tumorpenetrating peptide for cancer therapy, Mol. Med. Rep. 15 (5) (2017) 2925-2930 (Review), https://doi.org/10.3892/mmr.2017.6419.

[126]

A.Q. Dean, S. Luo, J.D. Twomey, B. Zhang, Targeting cancer with antibody-drug conjugates: promises and challenges, mAbs 13 (1) (2021) 1951427, https://doi.org/10.1080/19420862.2021.1951427.

[127]

C. Chittasupho, Multivalent ligand: design principle for targeted therapeutic delivery approach, Ther. Deliv. 3 (10) (2012) 1171-1187, https://doi.org/10.4155/tde.12.99.

[128]

L. Ma, C. Wang, Z. He, B. Cheng, L. Zheng, K. Huang, Peptide-drug conjugate: a novel drug design approach, Curr. Med. Chem. 24 (31) (2017) 3373-3396, https://doi.org/10.2174/0929867324666170404142840.

[129]

N. Zhao, Y. Qin, H. Liu, Z. Cheng, Tumor-targeting peptides: ligands for molecular imaging and therapy, Anti Cancer Agents Med. Chem. 18 (1) (2018) 74-86, https://doi.org/10.2174/1871520617666170419143459.

[130]

R. Liu, X. Li, W. Xiao, K.S. Lam, Tumor-targeting peptides from combinatorial libraries, Adv. Drug Deliv. Rev.110-111 (2017) 13-37, https://doi.org/10.1016/j.addr.2016.05.009.

[131]

C. Pinilla, J.R. Appel, P. Blanc, R.A. Houghten, Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries, Biotechniques 13 (6) (1992) 901-905.

[132]

H. Derakhshankhah, S. Jafari, Cell penetrating peptides: a concise review with emphasis on biomedical applications, Biomed. Pharmacother. 108 (2018) 1090-1096, https://doi.org/10.1016/j.biopha.2018.09.097.

[133]

M. Zorko, U. Langel, Cell-penetrating peptides: mechanism and kinetics of cargo delivery, Adv. Drug Deliv. Rev. 57 (4) (2005) 529-545, https://doi.org/10.1016/j.addr.2004.10.010.

[134]

D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, A. Prochiantz, Cell internalization of the third helix of the Antennapedia homeodomain is receptorindependent, J. Biol. Chem. 271 (30) (1996) 18188-18193, https://doi.org/10.1074/jbc.271.30.18188.

[135]

P.E. Thoren, D. Persson, P. Lincoln, B. Norden, Membrane destabilizing properties of cell-penetrating peptides, Biophys. Chem. 114 (2-3) (2005) 169-179, https://doi.org/10.1016/j.bpc.2004.11.016.

[136]

J. Regberg, A. Srimanee, U. Langel, Applications of cell-penetrating peptides for tumor targeting and future cancer therapies, Pharmaceuticals 5 (9) (2012) 991-1007, https://doi.org/10.3390/ph5090991.

[137]

V. Kersemans, B. Cornelissen, Targeting the tumour: cell penetrating peptides for molecular imaging and radiotherapy, Pharmaceuticals 3 (3) (2010) 600-620, https://doi.org/10.3390/ph3030600.

[138]

H. Li, Z.M. Qian, Transferrin/transferrin receptor-mediated drug delivery, Med. Res. Rev. 22 (3) (2002) 225-250, https://doi.org/10.1002/med.10008.

[139]

M. Lelle, S. Kaloyanova, C. Freidel, M. Theodoropoulou, M. Musheev, C. Niehrs, G. Stalla, K. Peneva, Octreotide-mediated tumor-targeted drug delivery via a cleavable doxorubicin-peptide conjugate, Mol. Pharm. 12 (12) (2015) 4290-4300, https://doi.org/10.1021/acs.molpharmaceut.5b00487.

[140]

C. Fu, L. Yu, Y. Miao, X. Liu, Z. Yu, M. Wei, Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm. Sin. B 13 (2) (2023) 498-516, https://doi.org/10.1016/j.apsb.2022.07.020.

[141]

J. Lindberg, J. Nilvebrant, P.A. Nygren, F. Lehmann, Progress and future directions with peptide-drug conjugates for targeted cancer therapy, Molecules 26 (19) (2021), https://doi.org/10.3390/molecules26196042.

[142]

M. Alas, A. Saghaeidehkordi, K. Kaur, Peptide-drug conjugates with different linkers for cancer therapy, J. Med. Chem. 64 (1) (2021) 216-232, https://doi.org/10.1021/acs.jmedchem.0c01530.

[143]

B.M. Cooper, J. Iegre, O.D. Dh, M. Olwegard Halvarsson, D.R. Spring, Peptides as a platform for targeted therapeutics for cancer: peptide-drug conjugates (PDCs), Chem. Soc. Rev. 50 (3) (2021) 1480-1494, https://doi.org/10.1039/d0cs00556h.

[144]

J.R. McCombs, S.C. Owen, Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry, AAPS J. 17 (2) (2015) 339-351, https://doi.org/10.1208/s12248-014-9710-8.

[145]

W.R. Strohl, Current progress in innovative engineered antibodies, Protein Cell 9 (1) (2018) 86-120, https://doi.org/10.1007/s13238-017-0457-8.

[146]

C.S.B. Chia, A patent review on FDA-approved antibody-drug conjugates, their linkers and drug payloads, ChemMedChem 17 (11) (2022), https://doi.org/10.1002/cmdc.202200032.

[147]

D. Moazed, Small RNAs in transcriptional gene silencing and genome defence, Nature 457 (7228) (2009) 413-420, https://doi.org/10.1038/nature07756.

[148]

D. Jaskulski, J.K. deRiel, W.E. Mercer, B. Calabretta, R. Baserga, Inhibition of cellular proliferation by antisense oligodeoxynucleotides to PCNA cyclin, Science 240 (4858) (1988) 1544-1546, https://doi.org/10.1126/science.2897717.

[149]

S. He, B. Cen, L. Liao, Z. Wang, Y. Qin, Z. Wu, W. Liao, Z. Zhang, A. Ji, A tumortargeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo, Drug Deliv 24 (1) (2017) 471-481, https://doi.org/10.1080/10717544.2016.1267821.

[150]

S.M. Hammond, G. Hazell, F. Shabanpoor, A.F. Saleh, M. Bowerman, J.N. Sleigh, K.E. Meijboom, H. Zhou, F. Muntoni, K. Talbot, M.J. Gait, M.J. Wood,Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy, Proc. Natl. Acad. Sci. U. S. A. 113 (39) (2016) 10962-10967, https://doi.org/10.1073/pnas.1605731113.

[151]

P.G. Richardson, A. Oriol, A. Larocca, J. Blade, M. Cavo, P. Rodriguez-Otero, X. Leleu, O. Nadeem, J.W. Hiemenz, H. Hassoun, C. Touzeau, A. Alegre, A. Paner, C. Maisel, A. Mazumder, A. Raptis, J.S. Moreb, K.C. Anderson, J.P. Laubach, S. Thuresson, M. Thuresson, C. Byrne, J. Harmenberg, N.A. Bakker, M.V. Mateos, H. Investigators, Melflufen and dexamethasone in heavily pretreated relapsed and refractory multiple myeloma, J. Clin. Oncol. 39 (7) (2021) 757-767, https://doi.org/10.1200/JCO.20.02259.

[152]

A. Ray, D. Ravillah, D.S. Das, Y. Song, E. Nordstrom, J. Gullbo, P.G. Richardson, D. Chauhan, K.C. Anderson, A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells, Br. J. Haematol. 174 (3) (2016) 397-409, https://doi.org/10.1111/bjh.14065.

[153]

J.J. Miettinen, R. Kumari, G.A. Traustadottir, M.E. Huppunen, P. Sergeev, M.M. Majumder, A. Schepsky, T. Gudjonsson, J. Lievonen, D. Bazou, P. Dowling, P.O. Gorman, A. Slipicevic, P. Anttila, R. Silvennoinen, N.N. Nupponen, F. Lehmann, C.A. Heckman, Aminopeptidase expression in multiple myeloma associates with disease progression and sensitivity to melflufen, Cancers 13 (7) (2021), https://doi.org/10.3390/cancers13071527.

[154]

M. Wickstrom, K. Viktorsson, L. Lundholm, R. Aesoy, H. Nygren, L. Sooman, M. Fryknas, L.K. Vogel, R. Lewensohn, R. Larsson, J. Gullbo, The alkylating prodrug J1 can be activated by aminopeptidase N, leading to a possible target directed release of melphalan, Biochem. Pharmacol. 79 (9) (2010) 1281-1290, https://doi.org/10.1016/j.bcp.2009.12.022.

[155]

M. Wickstrom, P. Nygren, R. Larsson, J. Harmenberg, J. Lindberg, P. Sjoberg, M. Jerling, F. Lehmann, P. Richardson, K. Anderson, D. Chauhan, J. Gullbo, Melflufen - a peptidase-potentiated alkylating agent in clinical trials, Oncotarget 8 (39) (2017) 66641-66655, https://doi.org/10.18632/oncotarget.18420.

[156]

S. Strese, M. Wickstrom, P.F. Fuchs, M. Fryknas, P. Gerwins, T. Dale, R. Larsson, J. Gullbo, The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo, Biochem. Pharmacol. 86 (7) (2013) 888-895, https://doi.org/10.1016/j.bcp.2013.07.026.

[157]

J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, P.L. Kunz, M.H. Kulke, H. Jacene, D. Bushnell, T.M. O’Dorisio, R.P. Baum, H.R. Kulkarni, M. Caplin, R. Lebtahi, T. Hobday, E. Delpassand, E. Van Cutsem, A. Benson, R. Srirajaskanthan, M. Pavel, J. Mora, J. Berlin, E. Grande, N. Reed, E. Seregni, K. Oberg, M. Lopera Sierra, P. Santoro, T. Thevenet, J.L. Erion, P. Ruszniewski, D. Kwekkeboom, E. Krenning, N.-T. Investigators, Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors, N. Engl. J. Med. 376 (2) (2017) 125-135, https://doi.org/10.1056/NEJMoa1607427.

[158]

S. Das, T. Al-Toubah, G. El-Haddad, J. Strosberg, 177)Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors, Expet Rev. Gastroenterol. Hepatol. 13 (11) (2019) 1023-1031, https://doi.org/10.1080/17474124.2019.1685381.

[159]

B. Oronsky, P.C. Ma, D. Morgensztern, C.A. Carter, Nothing but net: a review of neuroendocrine tumors and carcinomas, Neoplasia 19 (12) (2017) 991-1002, https://doi.org/10.1016/j.neo.2017.09.002.

[160]

J.C. Reubi, Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment, Neuroendocrinology 80 (Suppl 1) (2004) 51-56, https://doi.org/10.1159/000080742.

[161]

G. Bennett, A. Brown, G. Mudd, P. Huxley, K. Van Rietschoten, S. Pavan, L. Chen, S. Watcham, J. Lahdenranta, N. Keen, MMAE delivery using the bicycle toxin conjugate BT5528, Mol. Cancer Therapeut. 19 (7) (2020) 1385-1394, https://doi.org/10.1158/1535-7163.MCT-19-1092.

[162]

M. Rigby, G. Bennett, L. Chen, G.E. Mudd, H. Harrison, P.J. Beswick, K. Van Rietschoten, S.M. Watcham, H.S. Scott, A.N. Brown, P.U. Park, C. Campbell, E. Haines, J. Lahdenranta, M.J. Skynner, P. Jeffrey, N. Keen, K. Lee, BT8009; A nectin-4 targeting bicycle toxin conjugate for treatment of solid tumors, Mol. Cancer Therapeut. 21 (12) (2022) 1747-1756, https://doi.org/10.1158/1535-7163.MCT-21-0875.

[163]

C. Gowland, P. Berry, J. Errington, P. Jeffrey, G. Bennett, L. Godfrey, M. Pittman, A. Niewiarowski, S.N. Symeonides, G.J. Veal, Development of a LC-MS/MS method for the quantification of toxic payload DM1 cleaved from BT1718 in a Phase I study, Bioanalysis 13 (2) (2021) 101-113, https://doi.org/10.4155/bio-2020-0256.

[164]

G.E. Mudd, H. Scott, L. Chen, K. van Rietschoten, G. Ivanova-Berndt, K. Dzionek, A. Brown, S. Watcham, L. White, P.U. Park, P. Jeffrey, M. Rigby, P. Beswick, Discovery of BT8009: a nectin-4 targeting bicycle toxin conjugate for the treatment of cancer, J. Med. Chem. 65 (21) (2022) 14337-14347, https://doi.org/10.1021/acs.jmedchem.2c00065.

[165]

S. Cazzamalli, B. Ziffels, F. Widmayer, P. Murer, G. Pellegrini, F. Pretto, S. Wulhfard, D. Neri, Enhanced therapeutic activity of non-internalizing smallmolecule- drug conjugates targeting carbonic anhydrase IX in combination with targeted interleukin-2, Clin. Cancer Res. 24 (15) (2018) 3656-3667, https://doi.org/10.1158/1078-0432.CCR-17-3457.

[166]

R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol. 7 (11) (2010) 653-664, https://doi.org/10.1038/nrclinonc.2010.139.

[167]

M. Srinivasarao, C.V. Galliford, P.S. Low, Principles in the design of ligandtargeted cancer therapeutics and imaging agents, Nat. Rev. Drug Discov. 14 (3) (2015) 203-219, https://doi.org/10.1038/nrd4519.

[168]

B. Wang, C.V. Galliford, P.S. Low, Guiding principles in the design of ligandtargeted nanomedicines, Nanomedicine (Lond) 9 (2) (2014) 313-330, https://doi.org/10.2217/nnm.13.175.

[169]

N. Krall, F. Pretto, W. Decurtins, G.J. Bernardes, C.T. Supuran, D. Neri, A smallmolecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors, Angew Chem. Int. Ed. Engl. 53 (16) (2014) 4231-4235, https://doi.org/10.1002/anie.201310709.

[170]

S. Cazzamalli, A. Dal Corso, D. Neri, Acetazolamide serves as selective delivery vehicle for dipeptide-linked drugs to renal cell carcinoma, Mol. Cancer Therapeut. 15 (12) (2016) 2926-2935, https://doi.org/10.1158/1535-7163.MCT-16-0283.

[171]

Y.W. Liu, K.S. Shia, C.H. Wu, K.L. Liu, Y.C. Yeh, C.F. Lo, C.T. Chen, Y.Y. Chen, T.K. Yeh, W.H. Chen, J.J. Jan, Y.C. Huang, C.L. Huang, M.Y. Fang, B.D. Gray, K.Y. Pak, T.A. Hsu, K.H. Huang, L.K. Tsou, Targeting tumor associated phosphatidylserine with new zinc dipicolylamine-based drug conjugates, Bioconjugate Chem 28 (7) (2017) 1878-1892, https://doi.org/10.1021/acs.bioconjchem.7b00225.

[172]

A. Regina, M. Demeule, C. Che, I. Lavallee, J. Poirier, R. Gabathuler, R. Beliveau, J.P. Castaigne, Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2, Br. J. Pharmacol. 155 (2) (2008) 185-197, https://doi.org/10.1038/bjp.2008.260.

[173]

T.E. Ciuleanu, A.V. Pavlovsky, G. Bodoky, A.M. Garin, V.K. Langmuir, S. Kroll, G.T. Tidmarsh, A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine, Eur. J. Cancer 45 (9) (2009) 1589-1596, https://doi.org/10.1016/j.ejca.2008.12.022.

[174]

P.S. Low, W.A. Henne, D.D. Doorneweerd, Discovery and development of folicacid- based receptor targeting for imaging and therapy of cancer and inflammatory diseases, Acc. Chem. Res. 41 (1) (2008) 120-129, https://doi.org/10.1021/ar7000815.

[175]

S.M. Hillier, K.P. Maresca, F.J. Femia, J.C. Marquis, C.A. Foss, N. Nguyen, C.N. Zimmerman, J.A. Barrett, W.C. Eckelman, M.G. Pomper, J.L. Joyal, J.W. Babich, Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer, Cancer Res. 69 (17) (2009) 6932-6940, https://doi.org/10.1158/0008-5472.CAN-09-1682.

[176]

M. Ginj, H. Zhang, B. Waser, R. Cescato, D. Wild, X. Wang, J. Erchegyi, J. Rivier, H.R. Macke, J.C. Reubi,Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors, Proc. Natl. Acad. Sci. U. S. A. 103 (44) (2006) 16436-16441, https://doi.org/10.1073/pnas.0607761103.

[177]

N. Krall, J. Scheuermann, D. Neri, Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries, Angew Chem. Int. Ed. Engl. 52 (5) (2013) 1384-1402, https://doi.org/10.1002/anie.201204631.

[178]

S.A. Kularatne, Z. Zhou, J. Yang, C.B. Post, P.S. Low, Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted (99m) Tcradioimaging agents, Mol. Pharm. 6 (3) (2009) 790-800, https://doi.org/10.1021/mp9000712.

[179]

W. Xia, P.S. Low, Folate-targeted therapies for cancer, J. Med. Chem. 53 (19) (2010) 6811-6824, https://doi.org/10.1021/jm100509v.

[180]

C.P. Leamon, J.A. Reddy, P.J. Klein, I.R. Vlahov, R. Dorton, A. Bloomfield, M. Nelson, E. Westrick, N. Parker, K. Bruna, M. Vetzel, M. Gehrke, J.S. Nicoson, R.A. Messmann, P.M. LoRusso, E.A. Sausville, Reducing undesirable hepatic clearance of a tumor-targeted vinca alkaloid via novel saccharopeptidic modifications, J. Pharmacol. Exp. Therapeut. 336 (2) (2011) 336-343, https://doi.org/10.1124/jpet.110.175109.

[181]

S. Cazzamalli, A.D. Corso, D. Neri, Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma, J. Contr. Release 246 (2017) 39-45, https://doi.org/10.1016/j.jconrel.2016.11.023.

[182]

M. Srinivasarao, P.S. Low, Ligand-targeted drug delivery, Chem. Rev. 117 (19) (2017) 12133-12164, https://doi.org/10.1021/acs.chemrev.7b00013.

[183]

R. Weinstain, E. Segal, R. Satchi-Fainaro, D. Shabat, Real-time monitoring of drug release, Chem. Commun. 46 (4) (2010) 553-555, https://doi.org/10.1039/b919329d.

[184]

J. Yang, H. Chen, I.R. Vlahov, J.X. Cheng, P.S. Low, Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates, J. Pharmacol. Exp. Therapeut. 321 (2) (2007) 462-468, https://doi.org/10.1124/jpet.106.117648.

[185]

K. Abu Ajaj, N. El-Abadla, P. Welker, S. Azab, R. Zeisig, I. Fichtner, F. Kratz, Comparative evaluation of the biological properties of reducible and acid-sensitive folate prodrugs of a highly potent doxorubicin derivative, Eur. J. Cancer 48 (13) (2012) 2054-2065, https://doi.org/10.1016/j.ejca.2011.08.003.

[186]

Y. Jin, Z. Zhang, S. Zou, F. Li, H. Chen, C. Peng, X. Deng, C. Wen, B. Shen, Q. Zhan, A novel c-MET-targeting antibody-drug conjugate for pancreatic cancer, Front. Oncol. 11 (2021) 634881, https://doi.org/10.3389/fonc.2021.634881.

[187]

Y. Liang, S. Li, X. Wang, Y. Zhang, Y. Sun, Y. Wang, X. Wang, B. He, W. Dai, H. Zhang, X. Wang, Q. Zhang, A comparative study of the antitumor efficacy of peptide-doxorubicin conjugates with different linkers, J. Contr. Release 275 (2018) 129-141, https://doi.org/10.1016/j.jconrel.2018.01.033.

[188]

S. Schuster, B. Biri-Kovacs, B. Szeder, V. Farkas, L. Buday, Z. Szabo, G. Halmos, G. Mezo, Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin-GnRH-III conjugates developed for targeted drug delivery, Beilstein J. Org. Chem. 14 (2018) 756-771, https://doi.org/10.3762/bjoc.14.64.

[189]

A.A.P. Tripodi, I. Randelovic, B. Biri-Kovacs, B. Szeder, G. Mezo, J. Tovari, In vivo tumor growth inhibition and antiangiogenic effect of cyclic NGR peptidedaunorubicin conjugates developed for targeted drug delivery, Pathol. Oncol. Res. 26 (3) (2020) 1879-1892, https://doi.org/10.1007/s12253-019-00773-3.

[190]

A.F. Salem, S. Wang, S. Billet, J.F. Chen, P. Udompholkul, L. Gambini, C. Baggio, H.R. Tseng, E.M. Posadas, N.A. Bhowmick, M. Pellecchia, Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide-drug conjugate, J. Med. Chem. 61 (5) (2018) 2052-2061, https://doi.org/10.1021/acs.jmedchem.7b01837.

[191]

A.D. Ricart, Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin, Clin. Cancer Res. 17 (20) (2011) 6417-6427, https://doi.org/10.1158/1078-0432.CCR-11-0486.

[192]

M. Mollaev, N. Gorokhovets, E. Nikolskaya, M. Faustova, A. Zabolotsky, O. Zhunina, M. Sokol, I. Zamulaeva, E. Severin, N. Yabbarov, Type of pH sensitive linker reveals different time-dependent intracellular localization, in vitro and in vivo efficiency in alpha-fetoprotein receptor targeted doxorubicin conjugate, Int. J. Pharm. 559 (2019) 138-146, https://doi.org/10.1016/j.ijpharm.2018.12.073.

[193]

J. Li, E.A. Sausville, P.J. Klein, D. Morgenstern, C.P. Leamon, R.A. Messmann, P. LoRusso, Clinical pharmacokinetics and exposure-toxicity relationship of a folate-Vinca alkaloid conjugate EC145 in cancer patients, J. Clin. Pharmacol. 49 (12) (2009) 1467-1476, https://doi.org/10.1177/0091270009339740.

[194]

J.A. Reddy, E. Westrick, I. Vlahov, S.J. Howard, H.K. Santhapuram, C.P. Leamon, Folate receptor specific anti-tumor activity of folate-mitomycin conjugates, Cancer Chemother. Pharmacol. 58 (2) (2006) 229-236, https://doi.org/10.1007/s00280-005-0151-z.

[195]

Y. Sheng, Y. You, Y. Chen, Dual-targeting hybrid peptide-conjugated doxorubicin for drug resistance reversal in breast cancer, Int. J. Pharm. 512 (1) (2016) 1-13, https://doi.org/10.1016/j.ijpharm.2016.08.016.

[196]

C.P. Leamon, J.A. Reddy, I.R. Vlahov, P.J. Kleindl, M. Vetzel, E. Westrick, Synthesis and biological evaluation of EC140: a novel folate-targeted vinca alkaloid conjugate, Bioconjugate Chem. 17 (5) (2006) 1226-1232, https://doi.org/10.1021/bc060145g.

[197]

S.J. Moon, S.V. Govindan, T.M. Cardillo, C.A. D’Souza, H.J. Hansen, D.M. Goldenberg, Antibody conjugates of 7-ethyl-10-hydroxycamptothecin (SN- 38) for targeted cancer chemotherapy, J. Med. Chem. 51 (21) (2008) 6916-6926, https://doi.org/10.1021/jm800719t.

[198]

S.K. Kumar, S.A. Williams, J.T. Isaacs, S.R. Denmeade, S.R. Khan, Modulating paclitaxel bioavailability for targeting prostate cancer, Bioorg. Med. Chem. 15 (14) (2007) 4973-4984, https://doi.org/10.1016/j.bmc.2007.04.029.

[199]

X. Yao, J. Jiang, X. Wang, C. Huang, D. Li, K. Xie, Q. Xu, H. Li, Z. Li, L. Lou, J. Fang, A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent antitumor activity, Breast Cancer Res. Treat. 153 (1) (2015) 123-133, https://doi.org/10.1007/s10549-015-3503-3.

[200]

A.C. Tiberghien, J.N. Levy, L.A. Masterson, N.V. Patel, L.R. Adams, S. Corbett, D.G. Williams, J.A. Hartley, P.W. Howard, Design and synthesis of tesirine, a clinical antibody-drug conjugate pyrrolobenzodiazepine dimer payload, ACS Med. Chem. Lett. 7 (11) (2016) 983-987, https://doi.org/10.1021/acsmedchemlett.6b00062.

[201]

K.M. Bajjuri, Y. Liu, C. Liu, S.C. Sinha, The legumain protease-activated auristatin prodrugs suppress tumor growth and metastasis without toxicity, ChemMedChem 6 (1) (2011) 54-59, https://doi.org/10.1002/cmdc.201000478.

[202]

P.J. Burke, J.Z. Hamilton, S.C. Jeffrey, J.H. Hunter, S.O. Doronina, N.M. Okeley, J.B. Miyamoto, M.E. Anderson, I.J. Stone, M.L. Ulrich, J.K. Simmons, E.E. McKinney, P.D. Senter, R.P. Lyon, Optimization of a PEGylated glucuronidemonomethylauristatin E linker for antibody-drug conjugates, Mol. Cancer Therapeut. 16 (1) (2017) 116-123, https://doi.org/10.1158/1535-7163.MCT-16-0343.

[203]

J. Alsarraf, E. Peraudeau, P. Poinot, I. Tranoy-Opalinski, J. Clarhaut, B. Renoux, S. Papot, A dendritic beta-galactosidase-responsive folate-monomethylauristatin E conjugate, Chem. Commun. 51 (87) (2015) 15792-15795, https://doi.org/10.1039/c5cc05294g.

[204]

T. Karampelas, O. Argyros, N. Sayyad, K. Spyridaki, C. Pappas, K. Morgan, G. Kolios, R.P. Millar, G. Liapakis, A.G. Tzakos, D. Fokas, C. Tamvakopoulos, GnRH-Gemcitabine conjugates for the treatment of androgen-independent prostate cancer: pharmacokinetic enhancements combined with targeted drug delivery, Bioconjugate Chem. 25 (4) (2014) 813-823, https://doi.org/10.1021/bc500081g.

[205]

S.S. Yu, K. Athreya, S.V. Liu, A.V. Schally, D. Tsao-Wei, S. Groshen, D.I. Quinn, T.B. Dorff, S. Xiong, J. Engel, J. Pinski, A phase II trial of AEZS-108 in castrationand taxane-resistant prostate cancer, Clin. Genitourin. Cancer 15 (6) (2017) 742-749, https://doi.org/10.1016/j.clgc.2017.06.002.

[206]

T.W. Moody, L.C. Sun, S.A. Mantey, T. Pradhan, L.V. Mackey, N. Gonzales, J.A. Fuselier, D.H. Coy, R.T. Jensen, In vitro and in vivo antitumor effects of cytotoxic camptothecin-bombesin conjugates are mediated by specific interaction with cellular bombesin receptors, J. Pharmacol. Exp. Therapeut. 318 (3) (2006) 1265-1272, https://doi.org/10.1124/jpet.106.104141.

[207]

G.S. Falchook, J.C. Bendell, S.V. Ulahannan, S. Sen, R. Vilimas, K. Kriksciukaite, L. Mei, G. Jerkovic, N. Sarapa, M. Bilodeau, J. Bloss, A. Thomas, Pen-866, a miniature drug conjugate of a heat shock protein 90 (HSP90) ligand linked to SN38 for patients with advanced solid malignancies: phase I and expansion cohort results, J. Clin. Oncol. 38 (15) (2020), https://doi.org/10.1200/jco.2020.38.15_suppl.3515.

[208]

A. Rana, S. Bhatnagar, Advancements in folate receptor targeting for anti-cancer therapy: a small molecule-drug conjugate approach, Bioorg. Chem. 112 (2021) 104946, https://doi.org/10.1016/j.bioorg.2021.104946.

[209]

R. Erez, E. Segal, K. Miller, R. Satchi-Fainaro, D. Shabat, Enhanced cytotoxicity of a polymer-drug conjugate with triple payload of paclitaxel, Bioorg. Med. Chem. 17 (13) (2009) 4327-4335, https://doi.org/10.1016/j.bmc.2009.05.028.

[210]

L.M. Millner, L.N. Strotman, The future of precision medicine in oncology, Clin. Lab. Med. 36 (3) (2016) 557-573, https://doi.org/10.1016/j.cll.2016.05.003.

[211]

R.M. Hoffmann, B.G.T. Coumbe, D.H. Josephs, S. Mele, K.M. Ilieva, A. Cheung, A.N. Tutt, J.F. Spicer, D.E. Thurston, S. Crescioli, S.N. Karagiannis, Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs), OncoImmunology 7 (3) (2018) e1395127, https://doi.org/10.1080/2162402X.2017.1395127.

[212]

P.A. Szijj, C. Bahou, V. Chudasama, Minireview: addressing the retro-Michael instability of maleimide bioconjugates, Drug Discov. Today Technol. 30 (2018) 27-34, https://doi.org/10.1016/j.ddtec.2018.07.002.

[213]

H. Donaghy, Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates, mAbs 8 (4) (2016) 659-671, https://doi.org/10.1080/19420862.2016.1156829.

[214]

A.C. Parslow, S. Parakh, F.T. Lee, H.K. Gan, A.M. Scott, Antibody-drug conjugates for cancer therapy, Biomedicines 4 (3) (2016), https://doi.org/10.3390/biomedicines4030014.

[215]

R.N. Al-Rohil, C.A. Torres-Cabala, A. Patel, M.T. Tetzlaff, D. Ivan, P. Nagarajan, J.L. Curry, R.N. Miranda, M. Duvic, V.G. Prieto, P.P. Aung, Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: a novel finding, J. Cutan. Pathol. 43 (12) (2016) 1161-1166, https://doi.org/10.1111/cup.12797.

[216]

S. Garcia-Alonso, A. Ocana, A. Pandiella, Resistance to antibody-drug conjugates, Cancer Res. 78 (9) (2018) 2159-2165, https://doi.org/10.1158/0008-5472.CAN-17-3671.

[217]

Y.T. Lee, Y.J. Tan, C.E. Oon, Molecular targeted therapy: treating cancer with specificity, Eur. J. Pharmacol. 834 (2018) 188-196, https://doi.org/10.1016/j.ejphar.2018.07.034.

[218]

J. Andreev, N. Thambi, A.E. Perez Bay, F. Delfino, J. Martin, M.P. Kelly, J.R. Kirshner, A. Rafique, A. Kunz, T. Nittoli, D. MacDonald, C. Daly, W. Olson, G. Thurston, Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs, Mol. Cancer Therapeut. 16 (4) (2017) 681-693, https://doi.org/10.1158/1535-7163.MCT-16-0658.

[219]

F. Tang, Y. Yang, Y. Tang, S. Tang, L. Yang, B. Sun, B. Jiang, J. Dong, H. Liu, M. Huang, M.Y. Geng, W. Huang, One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates, Org. Biomol. Chem. 14 (40) (2016) 9501-9518, https://doi.org/10.1039/c6ob01751g.

[220]

V.M. Ahrens, K. Bellmann-Sickert, A.G. Beck-Sickinger, Peptides and peptide conjugates: therapeutics on the upward path, Future Med. Chem. 4 (12) (2012) 1567-1586, https://doi.org/10.4155/fmc.12.76.

[221]

J.W. Yoo, E. Chambers, S. Mitragotri, Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects, Curr. Pharmaceut. Des. 16 (21) (2010) 2298-2307, https://doi.org/10.2174/138161210791920496.

[222]

K. Kalimuthu, B.C. Lubin, A. Bazylevich, G. Gellerman, O. Shpilberg, G. Luboshits, M.A. Firer, Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells, J. Nanobiotechnol. 16 (1) (2018) 34, https://doi.org/10.1186/s12951-018-0362-1.

[223]

K. Klupsch, V. Baeriswyl, R. Scholz, J. Dannenberg, R. Santimaria, D. Senn, E. Kage, A. Zumsteg, I. Attinger-Toller, U. von der Bey, S. Konig-Friedrich, F. Dupuy, W. Lembke, C. Albani, S. Wendelspiess, L. Dinkel, D. Saro, R.W. Hepler, G.S. Laszlo, C.J. Gudgeon, J. Bertschinger, S. Brack, R.B. Walter, COVA4231, a potent CD3/CD33 bispecific FynomAb with IgG-like pharmacokinetics for the treatment of acute myeloid leukemia, Leukemia 33 (3) (2019) 805-808, https://doi.org/10.1038/s41375-018-0249-z.

[224]

D. Dong, G. Xia, Z. Li, Z. Li, Human serum albumin and HER2-binding affibody fusion proteins for targeted delivery of fatty acid-modified molecules and therapy, Mol. Pharm. 13 (10) (2016) 3370-3380, https://doi.org/10.1021/acs.molpharmaceut.6b00265.

[225]

T.K. Patel, N. Adhikari, S.A. Amin, S. Biswas, B. Ghosh, Small molecule drug conjugate (SMDC): an emerging strategy for anticancer drug design and discovery 45 (12) (2021) 5291-5321, https://doi.org/10.1039/d0nj04134c.

AI Summary AI Mindmap
PDF (2918KB)

373

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/