Dual-targeting liposomal delivery of sorafenib and docetaxel for enhanced synergistic therapy in advanced hepatocellular carcinoma

Yawen Yao , Yue Hu , Xinwang Meng , Fenyan Feng , Feng Xu , Guangji Wang , Hua Yu , Juan Li

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100046

PDF (5821KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100046 DOI: 10.1016/j.pscia.2024.100046
Research Article
research-article

Dual-targeting liposomal delivery of sorafenib and docetaxel for enhanced synergistic therapy in advanced hepatocellular carcinoma

Author information +
History +
PDF (5821KB)

Abstract

Patients with advanced hepatocellular carcinoma (HCC) are not sensitive to sorafenib (SOR), therefore, combination therapy is required. In this study, an improved thin-film dispersion and post-insertion anchoring technique was utilized to construct a dual-targeted co-delivery SOR and docetaxel (DTX) liposome drug delivery system, folate/chondroitin sulfate with SOR/DTX-modified liposomes (FA/CS@SDLP), to jointly enhance the anti-recurrence and metastasis of HCC. FA/CS@SDLP can establish the gradual release of the two drugs because of successful lysosomal escape in the condensed hyaluronidase environment. The results indicated that modification with folate (FA) and chondroitin sulfate (CS) significantly enhanced the cellular uptake of FA/CS@SDLP and the internalization of SOR/DTX in HepG2 cells through FA and CD44 receptor-mediated endocytosis. Compared to free drugs or the mono-targeted liposomal system (FA@SDLP), FA/CS@SDLP presented higher potency against HepG2 cells regarding pro-apoptosis, anti-proliferation, and anti-metastasis (migration and invasion). Moreover, a more satisfactory antitumor efficacy was observed for FA/CS@SDLP in the pulmonary metastasis of HCC in a mouse model. In summary, dual-targeted co-delivery of liposomes can synergistically treat HCC recurrence and metastasis, providing a new approach for the clinically accurate treatment of HCC.

Keywords

Sorafenib / Docetaxel / Dual-targeting liposomes / Combination therapy / Advanced hepatocellular carcinoma

Cite this article

Download citation ▾
Yawen Yao, Yue Hu, Xinwang Meng, Fenyan Feng, Feng Xu, Guangji Wang, Hua Yu, Juan Li. Dual-targeting liposomal delivery of sorafenib and docetaxel for enhanced synergistic therapy in advanced hepatocellular carcinoma. Pharmaceutical Science Advances, 2024, 2(1): 100046 DOI:10.1016/j.pscia.2024.100046

登录浏览全文

4963

注册一个新账户 忘记密码

Availability of data and material

The data generated or analyzed in this study have been included in a published article. These data will be available upon request.

Fundings

This work was financially supported by the National Natural Science Foundation of China [grant number 81373363]; the China Post-doctoral Science Foundation [grant number 2018M632431]; the Innovation Project of Jiangsu Province [grant number KYCX18-0758]; the China Science and Technology Development Fund and the National Major Scientific and Technological Special Project for “Significant New Drugs Development” during the Twelfth Five-year Plan Period [grant number 2015ZX09501001]; the Science and Technology Development Fund, Macau SAR [FDCT No.0159/2020/A3, 005/2023/SKL]; and the Macau Research Committee of the University of Macau [grant number MYRGGRG2023-00214-ICMS-UMDF, MYRG2022-00189-ICMS].

Ethics statement

All animal procedures complied with the Guidelines for the Care and Use of the Pharmic Laboratory Animal Center of China Pharmaceutical University, and the experiments were approved by the Animal Ethics Committee of China Pharmaceutical University (2022-03-006).

CRediT authorship contribution statement

Yawen Yao: Writing - original draft, Visualization, Investigation, Conceptualization. Yue Hu: Methodology, Investigation, Formal analysis. Xinwang Meng: Validation, Methodology, Investigation. Fenyan Feng: Resources, Methodology, Investigation. Feng Xu: Resources, Methodology. Guangji Wang: Project administration, Funding acquisition. Hua Yu: Writing - review & editing, Visualization, Funding acquisition. Juan Li: Supervision, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank the Cellular and Molecular Biology Center of China Pharmaceutical University and the Pathology and PDX Efficacy Evaluation Center of China Pharmaceutical University for providing the instruments used in this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2024.100046.

References

[1]

J.J. Qiu, G.F. Wei, J.L. Du, J. Guo, Advances in the application of different anesthetic methods and drugs in interventional therapy for hepatocellular carcinoma, Clin. Res. Hepatol. Gastroenterol. 46 (2022) 101982. https://doi.org/10.1016/j.clinre.2022.101982.

[2]

H. Rojas, Hepatocellular carcinoma: practice guidelines update for the advanced practice provider, J. Nurse Pract. 16 (2020) 64-68. https://doi.org/10.1016/j.nurpra.2019.10.009.

[3]

X. Zhu, H. Pan, L. Liu, Long noncoding RNA network: novel insight into hepatocellular carcinoma metastasis, Int. J. Mol. Med. 48 (2021) 134 (Review), https://doi.org/10.3892/ijmm.2021.4967.

[4]

T. Couri, A. Pillai, Goals and targets for personalized therapy for HCC, Hepatol. Int. 13 (2019) 125-137. https://doi.org/10.1007/s12072-018-9919-1.

[5]

M.A. Morse, W. Sun, R. Kim, A.R. He, P.B. Abada, M. Mynderse, R.S. Finn, The role of angiogenesis in hepatocellular carcinoma, Clin. Cancer Res. 25 (2019) 912-920. https://doi.org/10.1158/1078-0432.CCR-18-1254.

[6]

J. Zucman-Rossi, A. Villanueva, J.C. Nault, J.M. Llovet, Genetic landscape and biomarkers of hepatocellular carcinoma, Gastroenterology 149 (2015) 1226-1239.e4. https://doi.org/10.1053/j.gastro.2015.05.061.

[7]

Y. Yang, Y. Cao, The impact of VEGF on cancer metastasis and systemic disease, Semin. Cancer Biol. 86 (2022) 251-261. https://doi.org/10.1016/j.semcancer.2022.03.011.

[8]

Z. Saidak, A.S. Giacobbi, C. Louandre, C. Sauzay, Y. Mammeri, A. Galmiche, Mathematical modelling unveils the essential role of cellular phosphatases in the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells, Cancer Lett 392 (2017) 1-8. https://doi.org/10.1016/j.canlet.2017.01.038.

[9]

Y.C. Yang, J. Cai, J. Yin, J. Zhang, K.L. Wang, Z.T. Zhang, Heparin-functionalized Pluronic nanoparticles to enhance the antitumor efficacy of sorafenib in gastric cancers, Carbohydr. Polym. 136 (2016) 782-790. https://doi.org/10.1016/j.carbpol.2015.09.023.

[10]

J. Mao, H. Yang, T. Cui, P. Pan, N. Kabir, D. Chen, J. Ma, X. Chen, Y. Chen, Y. Yang, Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT, Eur. J. Pharmacol. 832 (2018) 39-49. https://doi.org/10.1016/j.ejphar.2018.05.027.

[11]

S.S. Qi, J.H. Sun, H.H. Yu, S.Q. Yu, Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy, Drug Deliv 24 (2017) 1909-1926. https://doi.org/10.1080/10717544.2017.1410256.

[12]

J. Zhang, J. Hu, H.F. Chan, M. Skibba, G. Liang, M. Chen, iRGD decorated lipidpolymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy, Nanomedicine 12 (2016) 1303-1311. https://doi.org/10.1016/j.nano.2016.01.017.

[13]

B. Wang, L. Sun, M. Wen, Y. Tan, W.H. Almalki, H. Katouah, I. Kazmi, O. Afzal, A.S.A. Altamimi, F.A. Al-Abbasi, M. Alrobaian, K.S. Alharbi, S.K. Alenezi, A.F. Alghaith, S. Beg, M. Rahman, Nano lipidic carriers for codelivery of sorafenib and ganoderic acid for enhanced synergistic antitumor efficacy against hepatocellular carcinoma, Saudi Pharmaceut, J 29 (2021) 843-856. https://doi.org/10.1016/j.jsps.2021.06.006.

[14]

L. Niu, L. Liu, S. Yang, J. Ren, P.B.S. Lai, G.G. Chen, New insights into sorafenib resistance in hepatocellular carcinoma: responsible mechanisms and promising strategies, Biochim. Biophys. Acta Rev. Canc 1868 (2017) 564-570. https://doi.org/10.1016/j.bbcan.2017.10.002.

[15]

M. Ashrafizadeh, S. Mirzaei, F. Hashemi, A. Zarrabi, A. Zabolian, H. Saleki, S.O. Sharifzadeh, L. Soleymani, S. Daneshi, K. Hushmandi, H. Khan, A.P. Kumar, A.R. Aref, S. Samarghandian, New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities, Biomed. Pharmacother. 141 (2021) 111824. https://doi.org/10.1016/j.biopha.2021.111824.

[16]

S.C. Baetke, T. Lammers, F. Kiessling, Applications of nanoparticles for diagnosis and therapy of cancer, Br. J. Radiol. 88 (2015) 20150207. https://doi.org/10.1259/bjr.20150207.

[17]

Y. Li, J. Luo, M.T. Lin, P. Zhi, W.W. Guo, M. Han, J. You, J.Q. Gao, Co-Delivery of metformin enhances the antimultidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment, Mol. Pharm. 16 (2019) 2966-2979. https://doi.org/10.1021/acs.molpharmaceut.9b00199.

[18]

D. Sui, X. Tang, J. Ding, Y. Wang, Y. Qin, N. Zhang, X. Liu, Y. Deng, Y. Song, Sequential administration of sialic acid-modified liposomes as carriers for epirubicin and zoledronate elicit stronger antitumor effects with reduced toxicity, Int. J. Pharm. 602 (2021) 120552. https://doi.org/10.1016/j.ijpharm.2021.120552.

[19]

T.T.H. Thi, E.J.A. Suys, J.S. Lee, D.H. Nguyen, K.D. Park, N.P. Truong, Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID- 19 vaccines, Vaccines 9 (2021) 359. https://doi.org/10.3390/vaccines9040359.

[20]

M. Nikanjam, E.V. Capparelli, J.E. Lancet, A. Louie, G. Schiller, Persistent cytarabine and daunorubicin exposure after administration of novel liposomal formulation CPX-351: population pharmacokinetic assessment, Cancer Chemother. Pharmacol. 81 (2018) 171-178. https://doi.org/10.1007/s00280-017-3484-5.

[21]

F. Zahednezhad, M. Saadat, H. Valizadeh, P. Zakeri-Milani, B. Baradaran, Liposome and immune system interplay: challenges and potentials, J. Contr. Release 305 (2019) 194-209. https://doi.org/10.1016/j.jconrel.2019.05.030.

[22]

K. Luo, Y. Gao, S. Yin, Y. Yao, H. Yu, G. Wang, J. Li, Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer, Acta Biomater 134 (2021) 649-663. https://doi.org/10.1016/j.actbio.2021.07.029.

[23]

K. Luo, Y. Lian, M. Zhang, H. Yu, G. Wang, J. Li, Charge convertible biomimetic micellar nanoparticles for enhanced melanoma-targeted therapy through tumor cells and tumor-associated macrophages dual chemotherapy with Ido immunotherapy, Chem. Eng. J. 412 (2021) 128659. https://doi.org/10.1016/j.cej.2021.128659.

[24]

K. Luo, F. Xu, T. Yao, J. Zhu, H. Yu, G. Wang, J. Li, TPGS and chondroitin sulfate dual-modified lipid-albumin nanosystem for targeted delivery of chemotherapeutic agent against multidrug-resistant cancer, Int. J. Biol. Macromol. 183 (2021) 1270-1282. https://doi.org/10.1016/j.ijbiomac.2021.05.070.

[25]

C. Li, Q. Qiu, X. Gao, X. Yan, C. Fan, X. Luo, X. Liu, S. Wang, X. Lai, Y. Song, Y. Deng, Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy, J. Contr. Release 337 (2021) 393-406. https://doi.org/10.1016/j.jconrel.2021.06.027.

[26]

M. Liu, A.R. Khan, J. Ji, G. Lin, X. Zhao, G. Zhai, Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses, J. Contr. Release 290 (2018) 150-164. https://doi.org/10.1016/j.jconrel.2018.10.007.

[27]

L. Zhang, F. Gong, F. Zhang, J. Ma, P. Zhang, J. Shen, Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro, Int. J. Nanomed. 8 (2013) 1517-1524. https://doi.org/10.2147/IJN.S43263.

[28]

M. Jurczyk, K. Jelonek, M. Musial-Kulik, A. Beberok, D. Wrzesniok, J. Kasperczyk, Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery, Pharmaceutics 13 (2021) 13030326. https://doi.org/10.3390/pharmaceutics13030326.

[29]

M. Li, H. Fang, Q. Liu, Y. Gai, L. Yuan, S. Wang, H. Li, Y. Hou, M. Gao, X. Lan, Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer, Biomater. Sci. 8 (2020) 1802-1814. https://doi.org/10.1039/d0bm00029a.

[30]

K. Takara, H. Hatakeyama, N. Ohga, K. Hida, H. Harashima, Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake, Int. J. Pharm. 396 (2010) 143-148. https://doi.org/10.1016/j.ijpharm.2010.05.002.

[31]

K.S. Kim, Y.S. Youn, Y.H. Bae, Immune-triggered cancer treatment by intestinal lymphatic delivery of docetaxel-loaded nanoparticle, J. Contr. Release 311-312 (2019) 85-95. https://doi.org/10.1016/j.jconrel.2019.08.027.

[32]

G. Ma, X. Du, J. Zhu, F. Xu, H. Yu, J. Li, Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers, J. Drug Deliv. Sci. Technol. 63 (2021) 102493. https://doi.org/10.1016/j.jddst.2021.102493.

[33]

V. Banerjee, N. Sharda, J. Huse, D. Singh, D. Sokolov, S.J. Czinn, T.G. Blanchard, A. Banerjee, Synergistic potential of dual andrographolide and melatonin targeting of metastatic colon cancer cells: using the Chou-Talalay combination index method, Eur. J. Pharmacol. 897 (2021) 173919. https://doi.org/10.1016/j.ejphar.2021.173919.

[34]

Y. Zhang, L. Peng, J. Chu, M. Zhang, L. Sun, B. Zhong, Q. Wu, pH and redox dualresponsive copolymer micelles with surface charge reversal for co-delivery of alltrans- retinoic acid and paclitaxel for cancer combination chemotherapy, Int. J. Nanomed. 13 (2018) 6499-6515. https://doi.org/10.2147/IJN.S179046.

[35]

Y. Sun, X. Li, L. Zhang, X. Liu, B. Jiang, Z. Long, Y. Jiang, Cell permeable NBD peptide-modified liposomes by hyaluronic acid coating for the synergistic targeted therapy of metastatic inflammatory breast cancer, Mol. Pharm. 16 (2019) 1140-1155. https://doi.org/10.1021/acs.molpharmaceut.8b01123.

[36]

M. Zhang, J. He, C. Jiang, W. Zhang, Y. Yang, Z. Wang, J. Liu, Plaquehyaluronidase- responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced antiatherosclerotic therapy, Int. J. Nanomed. 12 (2017) 533-558. https://doi.org/10.2147/IJN.S124252.

[37]

Y. Wang, S. Ma, X. Liu, Y. Wei, H. Xu, Z. Liang, Y. Hu, X. Lian, D. Huang, Hyaluronic acid mediated Fe3O4 nanocubes reversing the EMT through targeted cancer stem cell, Colloids Surf. B Biointerfaces 222 (2023). https://doi.org/10.1016/j.colsurfb.2022.113071.

[38]

C. Yang, H. Chen, J. Zhao, X. Pang, Y. Xi, G. Zhai, Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting, Colloids Surf. B Biointerfaces 121 (2014) 206-213. https://doi.org/10.1016/j.colsurfb.2014.05.005.

[39]

J. Luo, T. Gong, L. Ma, Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management, Carbohydr. Polym. 249 (2020) 116887. https://doi.org/10.1016/j.carbpol.2020.116887.

[40]

Y. Liu, T. Kong, Z. Yang, Y. Zhang, J. Lei, P. Zhao, Self-assembled folic acid-targeted pectin-multi-arm polyethylene glycol nanoparticles for tumor intracellular chemotherapy, ACS Omega 6 (2021) 1223-1234. https://doi.org/10.1021/acsomega.0c04350.

[41]

F. Joris, L. De Backer, T. Van de Vyver, C. Bastiancich, S.C. De Smedt, K. Raemdonck, Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells, J. Contr. Release 269 (2018) 266-276. https://doi.org/10.1016/j.jconrel.2017.11.019.

[42]

L. Li, P. Zhang, C. Li, Y. Guo, K. Sun, In vitro/vivo antitumor study of modifiedchitosan/ carboxymethyl chitosan “boosted” charge-reversal nanoformulation, Carbohydr. Polym. 269 (2021) 118268. https://doi.org/10.1016/j.carbpol.2021.118268.

[43]

J.J. Bravo-Cordero, L. Hodgson, J. Condeelis, Directed cell invasion and migration during metastasis, Curr. Opin. Cell Biol. 24 (2012) 277-283. https://doi.org/10.1016/j.ceb.2011.12.004.

[44]

O. Leiva, C. Leon, S. Kah Ng, P. Mangin, C. Gachet, K. Ravid, The role of extracellular matrix stiffness in megakaryocyte and platelet development and function, Am. J. Hematol. 93 (2018) 430-441. https://doi.org/10.1002/ajh.25008.

[45]

A. Srivastava, R. Ralhan, J. Kaur, Angiogenesis in cutaneous melanoma: pathogenesis and clinical implications, Microsc. Res. Tech. 60 (2003) 208-224. https://doi.org/10.1002/jemt.10259.

[46]

L. Zhang, J.N. Wang, J.M. Tang, X. Kong, J.Y. Yang, F. Zheng, L.Y. Guo, Y.Z. Huang, L. Zhang, L. Tian, S.F. Cao, C.H. Tuo, H.L. Guo, S.Y. Chen, VEGF is essential for the growth and migration of human hepatocellular carcinoma cells, Mol. Biol. Rep. 39 (2012) 5085-5093. https://doi.org/10.1007/s11033-011-1304-2.

[47]

J. Yayan, K.J. Franke, M. Berger, W. Windisch, K. Rasche, Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review, Mol. Biol. 51 (2024) 165. https://doi.org/10.1007/s11033-023-08920-5.

AI Summary AI Mindmap
PDF (5821KB)

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/