Possible hemoglobin enhancing effect of phytol in methotrexate-induced folate deficient Swiss albino mice: In vivo and in silico studies

Muhammad Torequl Islam , Raihan Chowdhury , Md Sakib Al Hasan , Salehin Sheikh , Md Shimul Bhuia , Sumaya Akter Bithi , Most Israt Jahan Oni , Mehedi Hasan Bappi , Siddique Akber Ansari , Elaine C.P. Lucetti , Catarina M. Tahim , Henrique Douglas Melo Coutinho , Irfan Aamer Ansari

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100043

PDF (1421KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100043 DOI: 10.1016/j.pscia.2024.100043
Research Article
research-article

Possible hemoglobin enhancing effect of phytol in methotrexate-induced folate deficient Swiss albino mice: In vivo and in silico studies

Author information +
History +
PDF (1421KB)

Abstract

The diterpenoid phytol is evidently acting against anemia in experimental animals. However, the molecular mechanisms behind this issue are yet to be discovered. This study aimed to evaluate phytol's effect on methotrexate-induced folate-deficient animals through in vivo and in silico studies. For this, a total of thirty adult male Swiss albino mice were randomly divided into six different groups, namely the normal control (vehicle), the negative control (folate deficiency inducer, methotrexate 3 ​mg/kg), the standard (folic acid 1.5 ​mg/kg), two test groups comprising phytol 25 and 50 ​mg/kg, and a combined group composed of the standard and highest test doses of phytol. Except for the vehicle, all groups were treated with methotrexate for the first 3 days (once/day) to induce folate deficiency. Then followed by the respective treatment once a day for 3 days. Hemoglobin (Hb) level was measured from the peripheral blood (by tail cutting) on days 1st (before treatment), 4th (after methotrexate treatment), and 7th (after treatment). On the other hand, the computational studies were performed by PyMol, PyRex, Discovery Studio, and other complementary tools. Findings suggest that phytol significantly (p ​< ​0.05) augmented Hb levels that are altered by methotrexate-induced reduction of Hb levels in animals dose-dependently. The combination also augmented Hb levels in animals; however, its effect was slightly lower than the individual groups (standard and test). In the in silico study, phytol showed good binding capacity (binding energy: −7.0 ​kcal/mol) with dihydrofolate reductase (DHFR). In conclusion, phytol may act against folate deficiency by altering methotrexate's impacts in animals, possibly through interacting with DHFR. Further validated research is necessary to develop phytol as an anti-anemia drug in the near future.

Keywords

Hemoglobin / Folate deficiency / Phytol / Methotrexate / Folic acid

Cite this article

Download citation ▾
Muhammad Torequl Islam, Raihan Chowdhury, Md Sakib Al Hasan, Salehin Sheikh, Md Shimul Bhuia, Sumaya Akter Bithi, Most Israt Jahan Oni, Mehedi Hasan Bappi, Siddique Akber Ansari, Elaine C.P. Lucetti, Catarina M. Tahim, Henrique Douglas Melo Coutinho, Irfan Aamer Ansari. Possible hemoglobin enhancing effect of phytol in methotrexate-induced folate deficient Swiss albino mice: In vivo and in silico studies. Pharmaceutical Science Advances, 2024, 2(1): 100043 DOI:10.1016/j.pscia.2024.100043

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

This published article contains the data collected and studied during this investigation. Information will be provided upon valid request.

Ethics approval

This study was granted by the Ethical Committee of Bangabandhu Sheikh Mujibur Rahman Science and Technology University [#BSMRSTU-RC/PHR-2023-33].

Funding

Researcher supporting project number (PHR-2023-33), Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.

CRediT authorship contribution statement

Muhammad Torequl Islam: Conceptualization. Raihan Chowdhury: Investigation, Data curation. Md Sakib Al Hasan: Investigation, Formal analysis. Salehin Sheikh: Methodology, Data curation. Md Shimul Bhuia: Methodology, Formal analysis. Sumaya Akter Bithi: Software. Most Israt Jahan Oni: Writing - original draft. Mehedi Hasan Bappi: Resources, Methodology. Siddique Akber Ansari: Supervision. Elaine C.P. Lucetti: Validation, Methodology. Catarina M. Tahim: Supervision, Methodology. Henrique Douglas Melo Coutinho: Project administration. Irfan Aamer Ansari: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financialinterestsor personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

We are thankful to the researcher supporting project (PHR-2023-33), gabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.

References

[1]

K. Bibbins-Domingo, D.C. Grossman, S.J. Curry, K.W. Davidson, J.W. Epling, F.A. García, A.R. Kemper, A.H. Krist, A.E. Kurth, C. Landefeld, Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement, JAMA 317 (2) (2017) 183-189. https://doi.org/10.1001/jama.2016.19438.

[2]

A.A. West, M.A. Caudill, L.B. Bailey, Folate, PresentKnowledge in Nutrition, eleventhed., Elsevier, 2020, pp. 239-255. https://doi.org/10.1016/B978-0-323-66162-1.00014-7.

[3]

A.P. Singh, N.K. Maurya, R. Saxena, S. Saxena, An overview of red blood cell properties and functions, J. Int. Res. Med. Pharm. Sci. 19 (2) (2024) 14-23. https://doi.org/10.56557/jirmeps/2024/v19i28667.

[4]

G.M. Brittenham, G. Moir-Meyer, K.M. Abuga, A. Datta-Mitra, C. Cerami, R. Green, S.-R. Pasricha, S.H. Atkinson, Biology of anemia: a public health perspective, J. Nutr. 153 (2023) S7-S28. https://doi.org/10.1016/j.tjnut.2023.07.018.

[5]

C.D. Cantarella, D. Ragusa, M. Giammanco, S. Tosi nutrition, Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature, Genes Nutr 12 (2017) 1-15. https://doi.org/10.1186/s12263-017-0560-8.

[6]

H.-T. Yang, M. Lee, K.-S. Hong, B. Ovbiagele, J.L. Saver, Efficacy of folic acid supplementation in cardiovascular disease prevention: an updated meta-analysis of randomized controlled trials, Eur. J. Int. Med 23 (8) (2012) 745-754. https://doi.o rg/10.1016/j.ejim.2012.07.004.

[7]

Y. Li, T. Huang, Y. Zheng, T. Muka, J. Troup, F.B. Hu, Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials, J. Am. Heart Assoc. 5 (8) (2016) e003768, https://doi.org/10.1161/JAHA.116.003768.

[8]

T.N. Wien, E. Pike, T. Wisløff, A. Staff, S. Smeland, M. Klemp, Cancer risk with folic acid supplements: a systematic review and meta-analysis, BMJ Open 2 (1) (2012) e000653, https://doi.org/10.1136/bmjopen-2011-000653.

[9]

A. Coppen, C. Bolander-Gouaille, Treatment of depression: time to consider folic acid and vitamin B12, J. Psychopharmacol. 19 (1) (2005) 59-65. https://doi.org/10.1177/0269881105048899.

[10]

L. Shen, H.-F. Ji, Associations between homocysteine folic acid, vitamin B12 and Alzheimer’s disease: insights from meta-analyses, J. Alzheimers Dis. 46 (3) (2015) 777-790. https://doi.org/10.3233/JAD-150140.

[11]

S.J. Weinstein, T.J. Hartman, R. Stolzenberg-Solomon, P. Pietinen, M.J. Barrett, P.R. Taylor, J. Virtamo, D. Albanes, Prevention, Null association between prostate cancer and serum folate, vitamin B6, vitamin B12, and homocysteine, Cancer Epidemiol. Biomarkers Prev. 12 (11) (2003) 1271-1272,. https://pubmed.ncbi.nlm.nih.gov/14652294/.

[12]

M. Jägerstad, Folic acid fortification prevents neural tube defects and may also reduce cancer risks, Acta Paediatr. 101 (10) (2012) 1007-1012, https://doi.org/10.1111/j.1651-2227.2012.02781.x.

[13]

I. Ebisch, C. Thomas, W. Peters, D. Braat, R. Steegers-Theunissen, The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility, Hum. Reprod. Update 13 (2) (2007) 163-174. https://doi.org/10.1093/humupd/dml054.

[14]

B. Kamen, Folate and antifolate pharmacology, Seminars in oncology, Semin. Oncol. (1997) S18-S30,. https://pubmed.ncbi.nlm.nih.gov/9420019/.

[15]

N. Gonen, Y.G. Assaraf, Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance, Drug Resist. Updat. 15 (4) (2012) 183-210. https://doi.org/10.1016/j.drup.2012.07.002.

[16]

J.E. Baggott, R.A. Oster, T. Tamura, Meta-analysis of cancer risk in folic acid supplementation trials, Cancer Epidemiol 36 (1) (2012) 78-81. https://doi.org/10.1016/j.canep.2011.05.003.

[17]

K.R. Patel, A. Sobczyńska-Malefora, The adverse effects of an excessive folic acid intake, Eur. J. Clin. Nutr. 71 (2) (2017) 159-163. https://doi.org/10.1038/ejcn.2016.194.

[18]

M.T. Islam, E.S. Ali, S.J. Uddin, S. Shaw, M.A. Islam, M.I. Ahmed, M.C. Shill, U.K. Karmakar, N.S. Yarla, I. Khan, Phytol: a review of biomedical activities, Food Chem. Toxicol. 121 (2018) 82-94. https://doi.org/10.1016/j.fct.2018.08.032.

[19]

M.A. Usman, F.I. Usman, M.S. Abubakar, A.A. Salman, A. Adamu, M.A. Ibrahim, Phytol suppresses parasitemia and ameliorates anaemia and oxidative brain damage in mice infected with Plasmodium berghei, Exp. Parasitol. 224 (2021) 108097. https://doi.org/10.1016/j.exppara.2021.108097.

[20]

S.B. Saad, M.A. Ibrahim, I.D. Jatau, M.N. Shuaibu, The therapeutic potential of phytol towards Trypanosoma congolense infection and the inhibitory effects against Trypanosomal sialidase, Exp. Parasitol. 216 (2020) 107943. https://doi.org/10.1016/j.exppara.2020.107943.

[21]

R. Chowdhury, S. Bhuia, A.I. Rakib, S. Al Hasan, M.C. Shill, H.A. El-Nashar, M. El- Shazly, M.T. Islam, Gigantol, a promising natural drug for inflammation: a literature review and computational based study, Nat. Prod. Res. (2024) 1-17. https://doi.org/10.1080/14786419.2024.2340042.

[22]

M.S. Bhuia, T. Islam, M. Rokonuzzman, A.A. Shamsh Prottay, F. Akter, M.I. Hossain, R. Chowdhury, M.A. Kazi, A.B.R. Khalipha, H.D.M. Coutinho, Modulatory effects of phytol on the antiemetic property of domperidone, possibly through the D2 receptor interaction pathway: in vivo and in silico studies, 3, Biotech 13 (4) (2023) 116. https://doi.org/10.1007/s13205-023-03520-3.

[23]

R. Hasan, A. Alshammari, N.A. Albekairi, M.S. Bhuia, M. Afroz, R. Chowdhury, M.A. Khan, S.A. Ansari, I.A. Ansari, M. Mubarak, Antiemetic activity of abietic acid possibly through the 5HT3 and muscarinic receptors interaction pathways, Sci. Rep. 14 (1) (2024) 6642. https://doi.org/10.1038/s41598-024-57173-0.

[24]

A. Alavi, V. Sharma, Discovery, role of docking in anticancer drug discovery, Lett. Drug Design Discov 20 (10) (2023) 1490-1511. https://doi.org/10.2174/1570180820666221111151104.

[25]

R. Chowdhury, M.S. Bhuia, A.I. Rakib, R. Hasan, H.D.M. Coutinho, I.M. Araújo, I.R.A. de Menezes, M.T. Islam, Assessment of Quercetin antiemetic properties: in vivo and in silico investigations on receptor binding affinity and synergistic effects, Plants 12 (24) (2023) 4189. https://doi.org/10.3390/plants12244189.

[26]

S. Yuan, H.C.S. Chan, Z. Hu, Using PyMOL as a platform for computational drug design, J. Comput. Aided Mol. Des. 7 (2) (2017) e1298, https://doi.org/10.1007/s10822-010-9395-8.

[27]

M. Afroz, M.S. Bhuia, M.A. Rahman, R. Hasan, T. Islam, M.R. Islam, R. Chowdhury, M.A. Khan, D.A. e Silva, H.D.M. Coutinho, Anti-diarrheal effect of piperine possibly through the interaction with inflammation inducing enzymes: in vivo and in silico studies, Eur. J. Pharmacol. 965 (2024) 176289. https://doi.org/10.1016/j.ejphar.2023.176289.

[28]

N.T Issa, H. Wathieu, A. Ojo, S.W Byers, S. Dakshanamurthy, Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools, Curr. Drug Metab. 18 (6) (2017) 556-565. https://doi.org/10.2174/1389200218666170316093301.

[29]

J. Tolosa, F.J. Barba, N. Pallarés, E. Ferrer, Mycotoxin identification and in silico toxicity assessment prediction in Atlantic Salmon, Mar. Drugs 18 (12) (2020) 629. https://doi.org/10.3390/md18120629.

[30]

R. Chowdhury, M.S. Bhuia, M.S. Al Hasan, S.A. Ansari, I.A. Ansari, A.P.A.D. Gurgel, H.D.M. Coutinho, M.T. Islam, Anticonvulsant effect of (±) citronellal possibly through the GABAergic and voltage-gated sodium channel receptor interaction pathways: in vivo and in silico studies, Neurochem. Int. (2024) 105704. https://doi.org/10.1016/j.neuint.2024.105704.

[31]

B. Cronstein, Rheumatism, Molecular therapeutics. Methotrexate and its mechanism of action, Arthritis Rheum 39 (12) (1996) 1951-1960. https://doi. org/10.1002/art.1780391203.

[32]

L. Genestier, R. Paillot, L. Quemeneur, K. Izeradjene, J.-P. Revillard, Mechanisms of action of methotrexate, Bull. Rheum. Dis. 47 (2-3) (2000) 247-257,. https://pubmed.ncbi.nlm.nih.gov/1670292/.

[33]

B.N. Cronstein, M.A. Eberle, H.E. Gruber, R.I. Levin,Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells, Proc. Natl. Acad. Sci. U S A 88 (6) (1991) 2441-2445. https://doi.org/10.1073/pnas.88.6.2441.

[34]

M. Paul, M. Hemshekhar, R.M. Thushara, M.S. Sundaram, S.K. NaveenKumar, S. Naveen, S. Devaraja, K. Somyajit, R. West, Methotrexate promotes platelet apoptosis via JNK-mediated mitochondrial damage: alleviation by N-acetylcysteine and N-acetylcysteine amide, PLoS One 10 (6) (2015) e0127558, https://doi.org/10.1371/journal.pone.0127558.

[35]

S. Whittle, R. Hughes, Folate supplementation and methotrexate treatment in rheumatoid arthritis: a review, Rheumatology 43 (3) (2004) 267-271. https://doi.org/10.1093/rheumatology/keh088.

[36]

R.G. Moran,Roles of folylpoly-gamma-glutamate synthetase in therapeutics with tetrahydrofolate antimetabolites: an overview, Semin. Oncol. (1999) 24-32.https://pubmed.ncbi.nlm.nih.gov/10598551/.

[37]

B. Shane, R. Affairs, Folate chemistry and metabolism, Clin. Res. Regulat. Affairs 18 (3) (2001) 137-159. https://doi.org/10.1081/CRP-100108170.

[38]

O.J. Wouters, M. McKee, J. Luyten, Estimated research and development investment needed to bring a new medicine to market, JAMA 323 (9) (2009-2018) 844-853 2020, https://doi.org/10.1001/jama.2020.1166.

[39]

Y. Chang, B.A. Hawkins, J.J. Du, P.W. Groundwater, D.E. Hibbs, F. Lai, A guide to in silico drug design, Pharmaceutics 15 (1) (2023) 49, https://doi.org/10.3390/pharmaceutics15010049.

[40]

S. Brogi, T.C. Ramalho, K. Kuca, J.L. Medina-Franco, M. Valko, In silico methods for drug design and discovery, Front. Media SA (2020) 612. https://doi.org/10.2174/1568026619666190121125106.

[41]

X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, Molecular docking: a powerful approach for structure-based drug discovery, Curr. Comput. Aided Drug Des. 7 (2) (2011) 146-157. https://doi.org/10.2174/157340911795677602.

[42]

R. Tian, S. Xu, X. Lei, W. Jin, M. Ye, H. Zou, Characterization of smallmolecule- biomacromolecule interactions: from simple to complex, TrAC Trends Analytical Chem 24 (9) (2005) 810-825. https://doi.org/10.1016/j.trac.2005.03.018.

[43]

X. Lin, X. Li, X. Lin, A review on applications of computational methods in drug screening and design, Molecules 25 (6) (2020) 1375, https://doi.org/10.3390/molecules25061375.

[44]

X. Montet, H. Yuan, R. Weissleder, L. Josephson, Enzyme-based visualization of receptor-ligand binding in tissues, Lab. Invest. 86 (5) (2006) 517-525. https://doi. org/10.1038/labinvest.3700404.

[45]

H. Verhoef, J. Veenemans, M.N. Mwangi, A.M. Prentice, Safety and benefits of interventions to increase folate status in malaria-endemic areas, Br. J. Haematol. 177 (6) (2017) 905-918. https://doi.org/10.1111/bjh.14618.

[46]

S.N. Wickramasinghe, Morphology, biology and biochemistry of cobalamin-and folate-deficient bone marrow cells, Baillieres Clin, Haematol 8 (3) (1995) 441-459. https://doi.org/10.1016/s0950-3536(05)80215-x.

[47]

W. Jelkmann, Erythropoietin: structure, control of production, and function, Physiol. Res. 72 (2) (1992) 449-489, https://doi.org/10.1152/physrev.1992.72.2.449.

[48]

J.L. Spivak, The mechanism of action of erythropoietin, Int. J. Cell Cloning 4 (3) (1986) 139-166. https://doi.org/10.1002/stem.5530040302.

[49]

K. Gupta, T. Taj, B. Thansiya, J.V. Kamath, Pre-clinical evaluation of hepatoprotective activity of phytol in wistar albino rats, Int. J. Compr. Adv. Pharmacol. 4 (1) (2019) 17-20. https://doi.org/10.18231/j.ijcaap.2019.004.

AI Summary AI Mindmap
PDF (1421KB)

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/