Phytochemical analysis and evaluation of the antibacterial and antibiotic potentiation activities of the aqueous extract of Cordia oncocalyx Allemão (Boraginaceae)

José Thyalisson da Costa Silva , José Jailson Lima Bezerra , Talysson Felismino Moura , Rafael Pereira da Cruz , Maraiza Gregorio de Oliveira , Adrielle Rodrigues Costa , Felicidade Caroline Rodrigues , João Arthur de Oliveira Borges , Terezinha Raila Ramos de Sousa , Maria Flaviana Bezerra Morais-Braga , Henrique Douglas Melo Coutinho , José Weverton Almeida-Bezerra

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100042

PDF (1050KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100042 DOI: 10.1016/j.pscia.2024.100042
Research Article
research-article

Phytochemical analysis and evaluation of the antibacterial and antibiotic potentiation activities of the aqueous extract of Cordia oncocalyx Allemão (Boraginaceae)

Author information +
History +
PDF (1050KB)

Abstract

The global antibiotic resistance crisis highlights the inappropriate use of medicines by the population and the lack of development of new antimicrobial agents. According to various studies, natural products are promising alternatives for combating bacterial resistance and treating infectious diseases. Accordingly, the present study aimed to analyze the chemical composition and evaluate the antibacterial and antibiotic potential of an aqueous extract of Cordia oncocalyx Allemão (AECO). Phytochemical analyses were performed using high-performance liquid chromatography equipped with a diode array detector (HPLC-DAD). The minimum inhibitory concentration (MIC) was used to evaluate the antibacterial activity of C. oncocalyx against conventional and multidrug-resistant (MDR) bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). According to HPLC-DAD analysis, the following compounds could be identified in the aqueous extract of C. oncocalyx: luteolin (3.07 ± 0.04 mg/g), caffeic acid (1.05 ± 0.03 mg/g), ellagic acid (0.62 ± 0.05 mg/g), and quercetin (0.58 ± 0.01). AECO did not exhibit antibacterial activity when administered alone (MIC >512 μg/mL). However, when combined with gentamicin, ampicillin, and norfloxacin, AECO potentiated the action of these antibiotics against the multi-resistant strains of P. aeruginosa and S. aureus. Although clinical relevance was not revealed by the in vitro tests against pathogenic bacteria, AECO can combined with commercial antibiotics to improve their antibacterial effects. Future studies focusing on the mechanisms of action of the compounds isolated from C. oncocalyx and toxicological tests are fundamental.

Keywords

Auxemma oncocalyx / Multidrug-resistant microorganisms / Natural products / Flavonoids / Antimicrobial

Cite this article

Download citation ▾
José Thyalisson da Costa Silva, José Jailson Lima Bezerra, Talysson Felismino Moura, Rafael Pereira da Cruz, Maraiza Gregorio de Oliveira, Adrielle Rodrigues Costa, Felicidade Caroline Rodrigues, João Arthur de Oliveira Borges, Terezinha Raila Ramos de Sousa, Maria Flaviana Bezerra Morais-Braga, Henrique Douglas Melo Coutinho, José Weverton Almeida-Bezerra. Phytochemical analysis and evaluation of the antibacterial and antibiotic potentiation activities of the aqueous extract of Cordia oncocalyx Allemão (Boraginaceae). Pharmaceutical Science Advances, 2024, 2(1): 100042 DOI:10.1016/j.pscia.2024.100042

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Dataset is available on request from the authors.

Ethics approval

Not applicable.

Funding information

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

José Thyalisson da Costa Silva: Writing - review & editing, Writing - original draft, Project administration, Conceptualization. José Jailson Lima Bezerra: Writing - review & editing, Formal analysis. Talysson Felismino Moura: Investigation. Rafael Pereira da Cruz: Methodology. Maraiza Gregorio de Oliveira: Methodology. Adrielle Rodrigues Costa: Investigation. Felicidade Caroline Rodrigues: Methodology. João Arthur de Oliveira Borges: Software. Terezinha Raila Ramos de Sousa: Investigation. Maria Flaviana Bezerra Morais-Braga: Supervision. Henrique Douglas Melo Coutinho: Supervision. José Weverton Almeida-Bezerra: Writing - review & editing, Writing - original draft, Project administration, Conceptualization.

All the authors have read and approved the final version of this manuscript.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank Universidade Regional do Cariri (URCA, Brazil).

References

[1]

E. López-Jácome, R. Franco-Cendejas, H. Quezada, R. Morales-Espinosa, I. Castillo- Juárez, B. González-Pedrajo, et al., The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches, Curr. Opin. Pharmacol. 48 (2019) 48-56. https://doi.org/10.1016/j.coph.2019.04.016.

[2]

S.A. Sousa, J.R. Feliciano, T. Pita, C.F. Soeiro, B.L. Mendes, L.G. Alves, J.H. Leitão, Bacterial nosocomial infections: multidrug resistance as a trigger for the development of novel antimicrobials, Antibiotics 10 (2021) 942. https://doi.org/10.3390/antibiotics10080942.

[3]

R.R. Watkins, A Primer on antimicrobials. A Rational Approach to Clinical Infectious Diseases, Elsevier, 2022, pp. 63-78 [Zelalem Temesgen].

[4]

A.T.B. Abadi, A.A. Rizvanov, T. Haertlé, N.L. Blatt, World Health Organization report:current crisis of antibiotic resistance, BioNanoScience 9 (2019) 778-788. https://doi.org/https://doi.org/10.1007/s12668-019-00658-4.

[5]

L. Serwecińska, Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health, Water 12 (2020) 3313. https://doi.org/10.3390/w12123313.

[6]

M.M. Islam, Bacterial resistance to antibiotics: access, excess and awareness in Bangladesh, Expert, Rev. Anti Infect. Ther. 19 (2021) 973-981. https://doi.org/10.1080/14787210.2021.1865804.

[7]

P.D. Gupta, T.J. Birdi, Development of botanicals to combat antibiotic resistance, J. Ayurveda. Integr. Med. 8 (2017) 266-275. https://doi.org/10.1016/j.jaim.2017.05.004.

[8]

J.W.A. Bezerra, A.R. Costa, M.A. Freitas, F.C. Rodrigues, M.A. Souza, A.R.P. Silva, et al., Chemical composition, antimicrobial, modulator and antioxidant activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants, Comp. Immunol. Microbiol. Infect. Dis. 65 (2019) 58-64. https://doi.org/10.1016/j.cimid.2019.04.010.

[9]

O. Genilloud, Natural products discovery and potential for new antibiotics, Curr. Opin. Microbiol. 51 (2019) 81-87. https://doi.org/10.1016/j.mib.2019.10.012.

[10]

G. Porras, F. Chassagne, J.T. Lyles, L. Marquez, M. Dettweiler, A.M. Salam, et al., Ethnobotany and the role of plant natural products in antibiotic drug discovery, Chem. Rev. 121 (2020) 3495-3560. https://doi.org/10.1021/acs.chemrev.0c00922.

[11]

M.J. Oza, Y.A. Kulkarni, Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus Cordia (Boraginaceae), J. Pharm. Pharmacol. 69 (2017) 755-789. https://doi.org/10.1111/jphp.12715.

[12]

M.N.S. Stapf,Cordia in Flora Do Brasil 2020, Jardim Botânico do Rio de Janeiro, 2020. https://floradobrasil.jbrj.gov.br/FB16502.(Accessed21February2024)

[13]

S.H. Hosseini, H. Bibak, A.R. Ghara, A. Sahebkar, A. Shakeri, Ethnobotany of the medicinal plants used by the ethnic communities of Kerman province, Southeast Iran, J. Ethnobiol. Ethnomed. 17 (2021) 1-35. https://doi.org/10.1186/s13002-021-00438-z.

[14]

Y.F. Wandji, G.E.N. Donhachi, A.M.Y. Djogang, E. Djoko, F. Nguimatsia, D. Wouessidjewe, Ethnobotanical survey on plants used in the treatment of infectious diseases in the Bamboutos division (Cameroon), J. Pharmacogn, Phytochem. 11 (2022) 51-66. https://doi.org/10.22271/phyto.2022.v11.i1a.14341.

[15]

S. Hussain, F. Ullah, A. Shah, I. Ullah, S. Mehmood, I. Gul, et al., Quantitative ethnomedicinal studies of wild edible fruits used by the indigenous people of the Surghar Range, Pakistan, Ethnobot. Res. Appl. 26 (2023) 1-17. https://doi.org/10.32859/era.26.58.1-17.

[16]

S. Dubale, N. Abdissa, D. Kebebe, A. Debella, A. Zeynudin, S. Suleman, Ethnomedical review of plants and associated indigenous knowledge for the treatment of different infectious diseases in southwest Ethiopia, J. Herb. Med. 40 (2023) 100669. https://doi.org/10.1016/j.hermed.2023.100669.

[17]

M.D.F. Agra, K.N. Silva, I.J.L.D. Basílio, P.F.D. Freitas, J.M. Barbosa-Filho, Survey of medicinal plants used in the region Northeast of Brazil, Rev. Bras. Farmacogn. 18 (2008) 472-508. https://doi.org/10.1590/S0102-695X2008000300023.

[18]

S.L. Constantine, K.P. Viteri, K. Vizuete, A. Debut, A review of traditional uses and current applications of Cordia spp. (Boraginaceae) in the development of food and pharmaceutical products, Ethnobot. Res. Appl. 25 (2023) 1-32. https://doi.org/10.32859/era.25.19.1-32.

[19]

M. Matcheme, B. Dabolé, D. Moussa, J.N. Nyemb, T. Emmanuel, S. Laurent, et al., Chemical constituents from Cordia myxa L. (Boraginaceae) and their antibacterial activity, Nat. Prod. Res. 2023) 1-9. https://doi.org/10.1080/14786419.2023.2288928.

[20]

S.H. Bughio, S. Bhatti, S. Memon, A.A. Memon, M.Q. Samejo, R. Memon, et al., Phytochemical and antibacterial assessment of essential oils extracted from aerial parts of Cordia dichotoma G, Forst, Int. J. Food Prop. 27 (2024) 632-640. https://doi.org/10.1080/10942912.2024.2344556.

[21]

P.M.P. Ferreira, A.A.C. Almeida, M.L.P. Conceição, O.D.L. Pessoa, L.G.A. Marques, R. Capasso, C. Pessoa, Cordia oncocalyx and oncocalyxones: from the phytochemistry to the anticancer action and therapeutic benefits against chronic diseases, Fitoterapia 169 (2023) 105624. https://doi.org/10.1016/j.fitote.2023.105624.

[22]

A.B. Sbardelotto, F.W.A. Barros-Nepomuceno, B.M. Soares, B.C. Cavalcanti, R.W.R. Sousa, M.P.D. Costa, et al., Cellular and biochemical antileukemic mechanisms of the meroterpenoid Oncocalyxone A, J. Toxicol. Environ. Health A 84 (2021) 95-111. https://doi.org/10.1080/15287394.2020.1835763.

[23]

R. Dongmo Zeukang, J.C. Kalinski, B. Tembeni, E.D. Goosen, J. Tembu, T. Tabopda KuiateT, et al., Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities, Nat. Prod. Bioprospect. 13 (2023) 1-24. https://doi.org/10.1007/s13659-023-00414-y.

[24]

R.E. Silva, F.D.O.S. Ribeiro, A.M.A. Carvalho, T.C. Daboit, J.D.B. Marinho-Filho, T.S. Matos, et al., Antimicrobial and antibiofilm activity of the benzoquinone oncocalyxone, A, Microb. Pathog. 149 (2020) 104513. https://doi.org/10.1016/j.micpath.2020.104513.

[25]

S.A. Adefegha, G. Oboh, O.R. Molehin, J.A. Saliu, M.L. Athayde, A.A. Boligon, Chromatographic fingerprint analysis, acetylcholinesterase inhibitory properties and antioxidant activities of redflower ragleaf (Crassocephalum crepidioides) extract, J. Food Biochem. 40 (2016) 109-119. https://doi.org/10.1111/jfbc.12200.

[26]

P.A.D.S. Fernandes, R.L.S. Pereira, A.T.L.D. Santos, H.D.M. Coutinho, M.F.B. Morais-Braga, V.B. Silva, et al., Phytochemical analysis, antibacterial activity and modulating effect of essential oil from Syzygium cumini ( L.) Skeels, Molecules 27 (2022) 3281. https://doi.org/10.3390/molecules27103281.

[27]

J.W. Almeida-Bezerra, R.P. Cruz, R.L.S. Pereira, V.B. Silva, D.D.O.B. Sousa, J.X.D.S. Neto, et al., Caryocar coriaceum fruits as a potential alternative to combat fungal and bacterial infections: In vitro evaluation of methanolic extracts, Microb. Pathog. 181 (2023) 106203. https://doi.org/10.3390/10.1016/j.micpath.2023.106203.

[28]

H.D. Coutinho, J.G. Costa, E.O. Lima, V.S. Falcão-Silva, J.P. Siqueira-Júnior, Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine, Chemotherapy 54 (2008) 328-330. https://doi.org/10.1159/000151267.

[29]

D.A. Dias, S. Urban, U. Roessner, A historical overview of natural products in drug discovery, Metabolites 2 (2012) 303-336. https://doi.org/10.3390/metabo2020303.

[30]

G. Ulrich-Merzenich, D. Panek, H. Zeitler, H. Vetter, H. Wagner, Drug development from natural products: exploiting synergistic effects, Indian J. Exp. Biol. 48 (2010) 208-219.

[31]

D.L. Silva, M.A.F. Santos, J.W.A. Bezerra, C.D.S. Leandro, M.D.P. Rodrigues, A.A. Boligon, M.A.P. Silva, Cordia oncocalyx (Allemão) Baill. (Boraginaceae) chemical composition and alelopathic effect against weeds, J. Agric. Sci. 10 (2018) 262-271. https://doi.org/10.5539/jas.v10n12p262.

[32]

M.U. Amin, M. Khurram, T.A. Khan, H.S. Faidah, Z.U. Shah, S.U. Rahman, et al., Effects of luteolin and quercetin in combination with some conventional antibiotics against methicillin-resistant Staphylococcus aureus, Int. J. Mol. Sci. 17 (2016) 1947. https://doi.org/10.3390/ijms17111947.

[33]

D. Joung, O. Kang, Y. Seo, T. Zhou, Y. Lee, S. Han, et al., Luteolin potentiates the effects of aminoglycoside and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus in vitro, Exp. Ther. Med. 11 (2016) 2597-2601. https://doi.org/10.3892/etm.2016.3212.

[34]

H.A. Sahyon, E.N.M. Ramadan, M.M.A. Mashaly, Synergistic effect of quercetin in combination with sulfamethoxazole as new antibacterial agent: in vitro and in vivo study, Pharm. Chem. J. 53 (2019) 803-813. https://doi.org/10.1007/s11094-019-02083-z.

[35]

C. Vipin, K. Saptami, F. Fida, M. Mujeeburahiman, S.S. Rao, et al., Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa, PLoS One 15 (2020) 1-15. https://doi.org/10.1371/journal.pone.0241304.

[36]

T.L.A. Nguyen, D. Bhattacharya, Antimicrobial activity of quercetin: an approach to its mechanistic principle, Molecules 27 (2022) 2494. https://doi.org/10.3390/molecules27082494.

[37]

W. Qian, M. Liu, Y. Fu, J. Zhang, W. Liu, J. Li, et al., Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties, Microb. Pathog. 142 (2020) 104056. https://doi.org/10.1016/j.micpath.2020.104056.

[38]

Q. Yuan, W. Feng, Y. Wang, Q. Wang, N. Mou, L. Xiong, et al., Luteolin attenuates the pathogenesis of Staphylococcus aureus by interfering with the agr system, Microb. Pathog. 165 (2022) 105496. https://doi.org/10.1016/j.micpath.2022.105496.

[39]

F. Khan, N.I. Bamunuarachchi, N. Tabassum, Y.M. Kim, Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens, J. Agric. Food Chem. 69 (2021) 2979-3004. https://doi.org/10.1021/acs.jafc.0c07579.

[40]

M. Kępa, M. Miklasińska-Majdanik, R.D. Wojtyczka, D. Idzik, K. Korzeniowski, J. Smoleń-Dzirba, T.J. Wąsik, Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains, BioMed Res. Int. 2018 (2018) 7413504, https://doi.org/10.1155/2018/7413504.

AI Summary AI Mindmap
PDF (1050KB)

276

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/