Recent progresses in combination cancer therapy using cyanine dye-based nanoparticles

Qian An , Si-Rui Xiang , You-Quan Zou

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100040

PDF (8418KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100040 DOI: 10.1016/j.pscia.2024.100040
Review Article
research-article

Recent progresses in combination cancer therapy using cyanine dye-based nanoparticles

Author information +
History +
PDF (8418KB)

Abstract

Surgical resection, radiotherapy, and chemotherapy are traditional methods for cancer treatment. With the development of materials science, photodynamic, photothermal, and sonodynamic therapies have been established over the past few years. Despite these advances, the development of novel and efficient cancer treatment protocols remains highly desirable. Recently, combination therapy has emerged as a powerful tool for achieving this goal. In this context, cyanine-nanoparticles have attracted considerable interest. Cyanine dyes have high molar absorptivity, narrow absorption/emission bands, and also excellent biocompatibility. This has meant that they have been widely used in biomedical imaging and therapy. Cyanine nanoparticles assembled from cyanine dyes and amphiphilic polymers or liposomes are endowed with high biocompatibility and long-term circulation for cancer combination therapy. A plethora of cyanine-nanoparticle-based combination therapy systems have been reported, and research in this discipline continues to expand. In this review, we aim to summarize recent advances in the combination therapy of cancers using cyanine nanoparticles over the last five years (i.e., from 2018 to 2023), with an emphasis on the structures of cyanine dyes, design concepts, and combination strategies. Personal insights and challenges in this field are also discussed. We expect that this review will inspire creative progress in combination therapies based on cyanine nanoparticles and facilitate the investigation of future clinical applications.

Keywords

Cyanine / Combination therapy / Nanoparticles / Photodynamic therapy / Photothermal therapy

Cite this article

Download citation ▾
Qian An, Si-Rui Xiang, You-Quan Zou. Recent progresses in combination cancer therapy using cyanine dye-based nanoparticles. Pharmaceutical Science Advances, 2024, 2(1): 100040 DOI:10.1016/j.pscia.2024.100040

登录浏览全文

4963

注册一个新账户 忘记密码

Author contribution statement

Qian An performed the literature review and drafted the paper. Si-Rui Xiang performed the literature review. You-Quan Zou initiated and supervised the study, and revised the manuscript accordingly. All of the authors have read and agreed to the published version of this manuscript.

Consent for publication

Not applicable.

Data availability statements

Not applicable.

Ethics approval

Not applicable.

Funding information

Financial support from startup funding from Wuhan University (Nos. 691000002; 600460026) and Taikang Center for Life and Medical Sciences (No. 692000007) is gratefully acknowledged.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Prof. Dr. Jing Liu (Wuhan University) for helpful discussions and proofreading the final version of this manuscript.

References

[1]

L. Li, X. Han, M.F. Wang, C.L. Li, T. Jia, X.H. Zhao, Recent advances in the development of near-infrared organic photothermal agents, Chem. Eng. J. 417 (2021) 128844. https://doi.org/10.1016/j.cej.2021.128844.

[2]

S.B. Lv, Y.Y. Miao, D.P. Liu, F.L. Song, Recent development of photothermal agents (PTAs) based on small organic molecular dyes, Chembiochem 21 (2020) 2098-2110. https://doi.org/10.1002/cbic.202000089.

[3]

P.C. Zhang, C.H. Hu, W. Ran, J. Meng, Q. Yin, Y.P. Li, Recent progress in lighttriggered Nanotheranostics for cancer treatment, Theranostics 6 (2016) 948-968. https://doi.org/10.7150/thno.15217.

[4]

L. Zhang, H. Jia, X.Q. Liu, Y.X. Zou, J.Y. Sun, M.Y. Liu, S.S. Jia, N. Liu, Y.Z. Li, Q. Wang, Heptamethine cyanine-based application for cancer theranostics, Front. Pharmacol. 12 (2022) 764654. https://doi.org/10.3389/fphar.2021.764654.

[5]

S.F. Duan, Y.L. Hu, Y. Zhao, K.Y. Tang, Z.J. Zhang, Z.L. Liu, Y. Wang, H.Y. Guo, Y.C. Miao, H.D. Du, D.L. Yang, S.K. Li, J.J. Zhang, Nanomaterials for photothermal cancer therapy, RSC Adv. 13 (2023) 14443-14460. https://doi.org/10.1039/D3RA02620E.

[6]

Y.H. Liu, Y.X. Lin, H. Liu, Y.P. Wang, Y.G. Wang, R.J. Shi, X. Jiang, Y.Q. Feng, S.X. Meng, Synergistic PDT/PTT/chemotherapy of PEGylated cyanine/ methotrexate hybrid nanoparticles IMPD, Mater. Lett. 317 (2022) 131957. https://doi.org/10.1016/j.matlet.2022.131957.

[7]

C.G. Alves, R. Lima-Sousa, B.L. Melo, A.F. Moreira, I.J. Correia, D. de Melo-Diogo, Heptamethine cyanine-loaded nanomaterials for cancer immuno-photothermal/ photodynamic therapy: a review, Pharmaceutics 14 (2022) 1015. https://doi.org/10.3390/pharmaceutics14051015.

[8]

G.Y. Pan, H.R. Jia, Y.X. Zhu, F.G. Wu, Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imagingguided photothermal cancer therapy, Nanoscale 10 (2018) 2115-2127. https://doi.org/10.1039/C7NR07495F.

[9]

G.J. Zhang, K.L. Li, S. He, L. Wang, S.Y. Guan, S.Y. Zhou, B.C. Xu, Electron donor-acceptor effect-induced organic/inorganic nanohybrids with low energy gap for highly efficient photothermal therapy, ACS Appl. Mater. Interfaces 13 (2021) 17920-17930. https://doi.org/10.1021/acsami.1c00554.

[10]

Z. Feng, X.M. Yu, M.X. Jiang, L. Zhu, Y. Zhang, W. Yang, W. Xi, G.H. Li, J. Qian, Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor, Theranostics 9 (2019) 5706-5719. https://doi.org/10.7150/thno.31332.

[11]

F.Y. Zhou, S.K. Yang, C. Zhao, W.W. Liu, X.F. Yao, H. Yu, X.L. Sun, Y. Liu, γ-Glutamyl transpeptidase-activatable near-infrared nanoassembly for tumor fluorescence imaging-guided photothermal therapy, Theranostics 11 (2021) 7045-7056. https://doi.org/10.7150/thno.60586.

[12]

Y.-S. Liu, X. Wei, X. Zhao, L.-J. Chen, X.-P. Yan, Near-infrared photothermal/ photodynamic-in-one agents integrated with a guanidinium-based covalent organic framework for intelligent targeted imaging-guided precision chemo/PTT/PDT sterilization, ACS Appl. Mater. Interfaces 13 (2021) 27895-27903. https://doi.org/10.1021/acsami.1c05705.

[13]

H. Liu, J.J. Yin, E.Y. Xing, Y.Y. Du, Y. Su, Y.Q. Feng, S.X. Meng, Halogenated cyanine dyes for synergistic photodynamic and photothermal therapy, Dyes Pigments 190 (2021) 109327. https://doi.org/10.1016/j.dyepig.2021.109327.

[14]

M.Q. Gao, X. Huang, Z.F. Wu, L.T. Wang, S.L. Yuan, Z.Z. Du, S.L. Luo, R. Li, W.D. Wang, Synthesis of a versatile mitochondria-targeting small molecule for cancer near-infrared fluorescent imaging and radio/photodynamic/photothermal synergistic therapies, Materials Today Bio 15 (2022) 100316. https://doi.org/10.1016/j.mtbio.2022.100316.

[15]

E. Feng, L. Jiao, S.L. Tang, M.M. Chen, S.B. Lv, D.P. Liu, J.T. Song, D.Y. Zheng, X.J. Peng, F.L. Song, Anti-photobleaching cyanine-based nanoparticles with simultaneous PET and ACQ effects for improved tumor photothermal therapy, Chem. Eng. J. 432 (2022) 134355. https://doi.org/10.1016/j.cej.2021.134355.

[16]

Y.C. Yan, J.W. Chen, Z.J. Yang, X. Zhang, Z. Liu, J.L. Hua, NIR organic dyes based on phenazine-cyanine for photoacoustic imaging-guided photothermal therapy, J. Mater. Chem. B 6 (2018) 7420-7426. https://doi.org/10.1039/C8TB01750F.

[17]

K. Bilici, S. Cetin, E. Celikbas, H. Yagci Acar, S. Kolemen, Recent advances in cyanine-based phototherapy agents, Front. Chem. 9 (2021) 707876. https://doi. org/10.3389/fchem.2021.707876.

[18]

Y. Cai, W.L. Si, W. Huang, P. Chen, J.J. Shao, X.C. Dong, Organic dye based nanoparticles for cancer phototheranostics, Small 14 (2018) 1704247. https://doi. org/10.1002/smll.201704247.

[19]

J. Cao, J.N. Chi, J.F. Xia, Y.R. Zhang, S.C. Han, Y. Sun, Iodinated cyanine dyes for fast near-infrared-guided deep tissue synergistic phototherapy, ACS Appl. Mater. Interfaces 11 (2019) 25720-25729. https://doi.org/10.1021/acsami.9b07694.

[20]

Y.X. Zhu, H.R. Jia, G. Gao, G.Y. Pan, Y.W. Jiang, P. Li, N. Zhou, C. Li, C. She, N.W. Ulrich, Z. Chen, F.G. Wu, Mitochondria-acting nanomicelles for destruction of cancer cells via excessive mitophagy/autophagy-driven lethal energy depletion and phototherapy, Biomaterials 232 (2020) 119668. https://doi.org/10.1016/j.biomaterials.2019.119668.

[21]

E.I. Shramova, A.B. Kotlyar, E.N. Lebedenko, S.M. Deyev, G.M. Proshkina, Nearinfrared activated cyanine dyes as agents for photothermal therapy and diagnosis of tumors, Acta Naturae 12 (2020) 102-113. https://doi.org/10.32607/actanaturae.11028.

[22]

Q. Cheng, Y.L. Tian, H.P. Dang, C.C. Teng, K. Xie, D.L. Yin, L.F. Yan, Antiquenching macromolecular NIR-II probes with high-contrast brightness for imaging-guided photothermal therapy under 1064 nm irradiation, Adv. Healthcare Mater. 11 (2021) 2101697. https://doi.org/10.1002/adhm.202101697.

[23]

Z.Q. Jiang, B. Yuan, Y.J. Wang, Z.N. Wei, S. Sun, O.U. Akakuru, Y. Li, J. Li, A.G. Wu, Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy, Nano Today 34 (2020) 100910. https://doi.org/10.1016/j.nantod.2020.100910.

[24]

A.S.C. Gonçalves, C.F. Rodrigues, N. Fernandes, D. de Melo-Diogo, P. Ferreira, A.F. Moreira, I.J. Correia, IR780 loaded gelatin-PEG coated gold core silica shell nanorods for cancer-targeted photothermal/photodynamic therapy, Biotechnol. Bioeng. 119 (2021) 644-656. https://doi.org/10.1002/bit.27996.

[25]

Z. Yu, X. Meng, S. Zhang, X. Wang, Y. Chen, P. Min, Z. Zhang, Y. Zhang, IR-808 loaded nanoethosomes for aggregation-enhanced synergistic transdermal photodynamic/photothermal treatment of hypertrophic scars, Biomater. Sci. 10 (2022) 158-166. https://doi.org/10.1039/D1BM01555A.

[26]

B.D. Zheng, M.T. Xiao, Red blood cell membrane nanoparticles for tumor phototherapy, Colloids Surf. B Biointerfaces 220 (2022) 112895. https://doi.org/10.1016/j.colsurfb.2022.112895.

[27]

X.Z. Zhao, S. He, W.J. Chi, X.G. Liu, P.Z. Chen, W. Sun, J.J. Du, J.L. Fan, X.J. Peng, An approach to developing cyanines with upconverted photosensitive efficiency enhancement for highly efficient NIR tumor phototheranostics, Adv. Sci. 9 (2022) 2202885. https://doi.org/10.1002/advs.202202885.

[28]

Y. Li, Y.M. Zhou, X.L. Yue, Z.F. Dai, Cyanine conjugates in cancer theranostics, Bioact. Mater. 6 (2021) 794-809. https://doi.org/10.1016/j.bioactmat.2020.09.009.

[29]

Y. Qiu, B. Yuan, Y. Cao, X.L. He, O.U. Akakuru, L.H. Lu, N.W. Chen, M.T. Xu, A.G. Wu, J. Li, Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment, WIREs Nanomedicine and Nanobiotechnology 15 (2023) e1910. https://doi.org/10.1002/wnan.1910.

[30]

Q. Yang, H.Y. Jin, Y.C. Gao, J.M. Lin, H. Yang, S.P. Yang, Photostable iridium(III)- Cyanine complex nanoparticles for photoacoustic imaging guided near-infrared photodynamic therapy in vivo, ACS Appl. Mater. Interfaces 11 (2019) 15417-15425. https://doi.org/10.1021/acsami.9b04098.

[31]

R. Borlan, M. Focsan, D. Maniu, S. Astilean, Interventional NIR fluorescence imaging of cancer: review on next generation of dye-loaded protein-based nanoparticles for real-time feedback during cancer surgery, Int. J. Nanomed. 16 (2021) 2147-2171. https://doi.org/10.2147/IJN.S295234.

[32]

M. Olszowy, M. Nowak-Perlak, M. Woźniak, Current strategies in photodynamic therapy (PDT) and photodynamic diagnostics (PDD) and the future potential of nanotechnology in cancer treatment, Pharmaceutics 15 (2023) 1712. https://doi.org/10.3390/pharmaceutics15061712.

[33]

Z.L. Tyrrell, Y. Shen, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers, Prog. Polym. Sci. 35 (2010) 1128-1143. https://doi.org/10.1016/j.progpolymsci.2010.06.003.

[34]

C. Lan, S. Zhao, Self-assembled nanomaterials for synergistic antitumour therapy, J. Mater. Chem. B 6 (2018) 6685-6704. https://doi.org/10.1039/C8TB01978A.

[35]

M. Pebam, R. P.S, M. Gangopadhyay, S. Thatikonda, A.K. Rengan, Terminalia chebula polyphenol and near-infrared dye-loaded poly(lactic acid) nanoparticles for imaging and photothermal therapy of cancer cells, ACS Appl. Bio Mater. 5 (2022) 5333-5346. https://doi.org/10.1021/acsabm.2c00724.

[36]

S.l. Wang, Y.Y. Chen, J.C. Guo, Q.Q. Huang, Liposomes for tumor targeted therapy: a review, Int. J. Mol. Sci. 24 (2023) 2643. https://doi.org/10.3390/ijms24032643.

[37]

Y. Wang, D. Liu, M. You, H. Yang, H.T. Ke, Liposomal cyanine dyes with enhanced nonradiative transition for the synergistic phototherapy of tumors, J. Mater. Chem. B 10 (2022) 3016-3022. https://doi.org/10.1039/D2TB00176D.

[38]

M. Wu, Z. Li, J.R. Yao, Z.Z. Shao, X. Chen, Pea protein/gold nanocluster/ indocyanine green ternary hybrid for near-infrared fluorescence/computed tomography dual-modal imaging and synergistic photodynamic/photothermal therapy, ACS Biomater. Sci. Eng. 5 (2019) 4799-4807. https://doi.org/10.1021/acsbiomaterials.9b00794.

[39]

J.N. Chi, Q.M. Ma, Z.J. Shen, C.Y. Ma, W. Zhu, S.C. Han, Y. Liang, J. Cao, Y. Sun, Targeted nanocarriers based on iodinated-cyanine dyes as immunomodulators for synergistic phototherapy, Nanoscale 12 (2020) 11008-11025. https://doi.org/10.1039/C9NR10674J.

[40]

X. Ma, Y. Huang, W. Chen, J. Liu, S.H. Liu, J. Yin, G.F. Yang, J-Aggregates formed by NaCl treatment of aza-coating heptamethine cyanines and their application to monitoring salt stress of plants and promoting photothermal therapy of tumors, Angew. Chem. Int. Ed. 62 (2022) e202216109. https://doi.org/10.1002/anie.202216109.

[41]

Y.D. Xue, J.P. Li, G.L. Yang, Z.Y. Liu, H.F. Zhou, W.A. Zhang, Multistep consolidated phototherapy mediated by a NIR-activated photosensitizer, ACS Appl. Mater. Interfaces 11 (2019) 33628-33636. https://doi.org/10.1021/acsami.9b10605.

[42]

Y. Zhang, M.K. Shi, Z.R. Yan, S. Zhang, M.Y. Wang, H. Xu, H.Y. Li, Y.C. Ying, S.H. Qiu, J.L. Liu, H. Yang, H.B. Chen, H. He, Z.Q. Guo, Ultrastable near-infrared nonlinear organic chromophore nanoparticles with intramolecular charge transfer for dually photoinduced tumor ablation, Adv. Healthcare Mater. 9 (2020) 2001042. https://doi.org/10.1002/adhm.202001042.

[43]

X. Zhao, K.C. Zhao, L.J. Chen, Y.S. Liu, J.L. Liu, X.P. Yan, A pH reversibly activatable NIR photothermal/photodynamic-in-one agent integrated with renewable nanoimplants for image-guided precision phototherapy, Chem. Sci. 12 (2021) 442-452. https://doi.org/10.1039/D0SC04408C.

[44]

T.G. Liu, Y.L. Chen, H.Z. Wang, M.Y. Cui, J.Q. Zhang, W.C. Zhang, P. Wang, Phototheranostic agents based on nonionic heptamethine cyanine for realizing synergistic cancer phototherapy, Adv. Healthcare Mater. 12 (2023) 2202817. https://doi.org/10.1002/adhm.202202817.

[45]

D.W. Jiang, C. Chen, Y.D. Xue, H.L. Cao, C.C. Wang, G.L. Yang, Y. Gao, P. Wang, W.A. Zhang, NIR-triggered “OFF/ON” photodynamic therapy through a upper critical solution temperature block copolymer, ACS Appl. Mater. Interfaces 11 (2019) 37121-37129. https://doi.org/10.1021/acsami.9b12889.

[46]

M.M. Leitäo, D. Melo-Diogo, C.G. Alves, R. Lima-Sousa, I.J. Correia, Prototypic heptamethine cyanine incorporating nanomaterials for cancer phototheragnostic, Adv. Healthcare Mater. 9 (2020) 1901665. https://doi.org/10.1002/adhm.201901665.

[47]

H.Y. Qian, Q. Cheng, Y.L. Tian, H.P. Dang, C.C. Teng, L.F. Yan, An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy, J. Mater. Chem. B 9 (2021) 2688-2696. https://doi.org/10.1002/adhm.201901665.

[48]

Y.W. Li, N. Xu, J.L. Zhou, W.H. Zhu, L.T. Li, M.X. Dong, H.T. Yu, L. Wang, W.S. Liu, Z.G. Xie, Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy, Biomater. Sci. 6 (2018) 2918-2924. https://doi.org/10.1039/C8BM00830B.

[49]

H. Xu, L. Dong, B. Zhang, Y. Huo, S. Lin, C. Liu, C. Chen, C. Wang, Supramolecular self-assembly of a hybrid ‘hyalurosome’ for targeted photothermal therapy in nonsmall cell lung cancer, Drug Deliv. 27 (2020) 378-386. https://doi.org/10.1080/10717544.2020.1730521.

[50]

P. Bhattarai, Z. Dai, Cyanine based nanoprobes for cancer theranostics, Adv. Healthcare Mater. 6 (2017) 1700262. https://doi.org/10.1002/adhm.201700262.

[51]

S.Y. Wang, F. Guo, Y.H. Ji, M. Yu, J.P. Wang, N. Li, Dual-mode imaging guided multifunctional theranosomes with mitochondria targeting for photothermally controlled and enhanced photodynamic therapy in vitro and in vivo, Mol. Pharm. 15 (2018) 3318-3331. https://doi.org/10.1021/acs.molpharmaceut.8b00351.

[52]

X. Liu, H.R. Jia, Y.X. Zhu, G. Gao, Y.W. Jiang, X. Cheng, K.F. Xu, X.W. Yu, F.G. Wu, Mitochondrion- and nucleus-acting polymeric nanoagents for chemo-photothermal combination therapy, Sci. China Mater. 63 (2020) 851-863.

[53]

T.X. Jin, D. Cheng, G.Y. Jiang, W.Q. Xing, P.W. Liu, B. Wang, W.P. Zhu, H.T. Sun, Z.R. Sun, Y.F. Xu, X.H. Qian, Engineering naphthalimide-cyanine integrated nearinfrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy, Bioact. Mater. 14 (2022) 42-51. https://doi.org/10.1016/j.bioactmat.2021.12.009.

[54]

Y. Li, J. Zhang, L. Zhu, M. Jiang, C. Ke, H. Long, R. Lin, C. Ye, X. Zhou, Z.X. Jiang, S. Chen, All-in-One heptamethine cyanine amphiphiles for dual imaging-guided chemo-photodynamic-photothermal therapy of breast cancer, Adv. Healthcare Mater. 12 (2023) 2300941. https://doi.org/10.1002/adhm.202300941.

[55]

M.M. Chen, R.Y. Li, Y. Liu, X.R. Song, J. Tian, Y.L. Fu, Y.J. Yang, C. Liu, Q.Q. Zhang,Near infrared and pH dual-activated coordination polymer nanosystem for imagingguided chemo-photothermal therapy, Chem. Eng. J. 406 (2021) 126745. https://doi.org/10.1016/j.cej.2020.126745.

[56]

T.C. Pham, V.N. Nguyen, Y. Choi, S. Lee, J. Yoon, Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy, Chem. Rev. 121 (2021) 13454-13619. https://doi.org/10.1021/acs.chemrev.1c00381.

[57]

B.X. Huang, X. Liu, G.L. Yang, J. Tian, Z.Y. Liu, Y.C. Zhu, X.P. Li, G.Q. Yin, W. Zheng, L. Xu, W.A. Zhang, A near-infrared organoplatinum(II) metallacycle conjugated with heptamethine cyanine for trimodal cancer therapy, CCS Chem 4 (2022) 2090-2101. https://doi.org/10.31635/ccschem.021.202100950.

[58]

J.Y. Tu, H. Liang, C.Y. Li, Y.B. Huang, Z.Q. Wang, X.Y. Chen, X.L. Yuan, The application and research progress of anti-angiogenesis therapy in tumor immunotherapy, Front. Immunol. 14 (2023) 1198972. https://doi.org/10.3389/fimmu.2023.1198972.

[59]

Y.X. Dong, L. Zhou, Z.J. Shen, Q.M. Ma, Y.F. Zhao, Y. Sun, J. Cao, Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy, Drug Deliv. 29 (2022) 238-253. https://doi.org/10.1080/10717544.2021.2023701.

[60]

S.Z. Wang, Y.X. Guo, X.P. Zhang, H.H. Feng, S.Y. Wu, Y.X. Zhu, H.R. Jia, Q.Y. Duan, S.J. Hao, F.G. Wu, Mitochondria-targeted photodynamic and mild-temperature photothermal therapy for realizing enhanced immunogenic cancer cell death via mitochondrial stress, Adv. Funct. Mater. 33 (2023) 2303328. https://doi.org/10.1002/adfm.202303328.

[61]

Y. Tian, M.R. Younis, Y.X. Tang, X. Liao, G. He, S.J. Wang, Z.G. Teng, P. Huang, L.J. Zhang, G.M. Lu, Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death, J. Nanobiotechnol. 19 (2021) 365. https://doi.org/10.1186/s12951-021-01109-7.

[62]

S.L. Luo, X. Luo, X.J. Wang, L. Li, H.G. Liu, B.H. Mo, H.B. Gan, W. Sun, L.T. Wang, H.J. Liang, S.T. Yu, Tailoring multifunctional small molecular photosensitizers to in vivo self-assemble with albumin to boost tumor-preferential accumulation, NIR imaging, and photodynamic/photothermal/immunotherapy, Small 18 (2022) 2201298. https://doi.org/10.1002/smll.202201298.

[63]

H.R. Zhu, C.Q. Huang, J.R. Di, Z.P. Chang, K. Li, S. Zhang, X.P. Li, D.C. Wu, Doxorubicin-Fe(III)-Gossypol infinite coordination polymer@PDA:CuO2 composite nanoparticles for cost-effective programmed photothermal-chemodynamiccoordinated dual drug chemotherapy trimodal synergistic tumor therapy, ACS Nano 17 (2023) 12544-12562. https://doi.org/10.1021/acsnano.3c02401.

[64]

X.J. Li, D.M. Xi, M.W. Yang, W. Sun, X.J. Peng, J.L. Fan, An organic nanotherapeutic agent self-assembled from cyanine and Cu (II) for combined photothermal and chemodynamic therapy, Adv. Healthcare Mater. 10 (2021) 2101008. https://doi. org/10.1002/adhm.202101008.

[65]

S. Shen, X.X. Liu, P.P. Jiang, S.F. Bei, L. Wu, S. Shen, Nanoscale micelles loaded with Fe3O4 nanoparticles for deep-tissue penetration and ferroptosis/sonodynamic tumor therapy, ACS Appl. Nano Mater. 5 (2022) 17664-17672. https://doi.org/10.1021/acsanm.2c03539.

[66]

D.R. Hu, M. Pan, Y. Yang, A. Sun, Y. Chen, L.P. Yuan, K.K. Huang, Y. Qu, C.Q. He, Q. Wei, Z.Y. Qian, Trimodal sono/photoinduced focal therapy for localized prostate cancer: single-drug-based nanosensitizer under dual-activation, Adv. Funct. Mater. 31 (2021) 2104473. https://doi.org/10.1002/adfm.202104473.

[67]

X. Zhang, D.W. Jiang, G.L. Yang, Y.C. Zhu, J. Tian, H.L. Cao, Y. Gao, W.A. Zhang, A single-wavelength NIR-triggered polymer for in situ generation of peroxynitrite (ONOO-) to enhance phototherapeutic efficacy, Chin. J. Polym. Sci. 39 (2021) 692-701. https://doi.org/10.1007/s10118-021-2540-0.

[68]

X.P. Han, W.Y. Fang, T.Q. Zhang, X. Zhong, K. Qian, Z.T. Jiang, R.F. Hu, G.Q. Shao, L. Zhang, Q. Zhang, A facile phototheranostic nanoplatform integrating NIR-II fluorescence/PA bimodal imaging and image-guided surgery/PTT combinational therapy for improved antitumor efficacy, J. Mater. Sci. Technol. 130 (2022) 208-218. https://doi.org/10.1016/j.jmst.2022.05.027.

[69]

Y.Q. Xia, Y.K. Wu, J.X. Cao, J. Wang, Z.X. Chen, C.R. Li, X.H. Zhang, Liposomal glucose oxidase for enhanced photothermal therapy and photodynamic therapy against breast tumors, ACS Biomater. Sci. Eng. 8 (2022) 1892-1906. https://doi.org/10.1021/acsbiomaterials.1c01311.

[70]

G.A. Marcelo, J. Galhano, E. Oliveira, Applications of cyanine-nanoparticle systems in science: health and environmental perspectives, Dyes Pigments 208 (2022) 1110756. https://doi.org/10.1016/j.dyepig.2022.110756.

[71]

H. Li, H. Kim, F. Xu, J. Han, Q. Yao, J. Wang, K. Pu, X. Peng, J. Yoon, Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook, Chem. Soc. Rev. 51 (2022) 1795-1835. https://doi.org/10.1039/D1CS00307K.

AI Summary AI Mindmap
PDF (8418KB)

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/