The most recent advances in liquisolid technology: Perspectives in the pharmaceutical industry

Yaseen Hussain , Jinghao Cui , Amos Dormocara , Haroon Khan

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100038

PDF (1053KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100038 DOI: 10.1016/j.pscia.2024.100038
Review Article
research-article

The most recent advances in liquisolid technology: Perspectives in the pharmaceutical industry

Author information +
History +
PDF (1053KB)

Abstract

Hydrophobic drugs exhibit altered bioavailability and pose other challenges at an industrial level due to their poor solubility and dissolution rates. In addition, poor flowability, compressibility, complex dosing schedules, and light-sensitivity problems associated with hydrophobic drugs have led to poor patient compliance. To overcome these problems at an industrial level, the liquid-solid technique is a promising approach for tackling such challenges. This study outlines the prementioned challenges related to hydrophobic drug candidates and introduces the liquisolid technique as a potential alternative using non-volatile water-miscible solvents, carrier agents, coating substances, and their subsequent applications in the pharmaceutical industry. Furthermore, this study highlights the role of liquisolid technology in achieving sustained-release kinetics, emphasizing its benefits in minimizing pH changes in drug release and enhancing photostability. The study aimed to explore the liquisolid technique as an important tool for improving drug delivery, overcoming solubility issues, and optimizing therapeutic outcomes. In addition, this manuscript holds significant importance by highlighting the applications and recent advances in liquisolid technology, focusing on industrial-level applications. Moreover, it is impressive that such a technique offers improved formulation options to enhance the safety and efficacy of therapy. Overall, this study serves as a valuable resource for researchers to overcome formulation challenges and optimize drug delivery in the pharmaceutical industry.

Keywords

Hydrophobic drugs / Liquisolid technique / Dissolution rate enhancement / Sustain release / pH disparity

Cite this article

Download citation ▾
Yaseen Hussain, Jinghao Cui, Amos Dormocara, Haroon Khan. The most recent advances in liquisolid technology: Perspectives in the pharmaceutical industry. Pharmaceutical Science Advances, 2024, 2(1): 100038 DOI:10.1016/j.pscia.2024.100038

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

Conceptualization, Yaseen Hussain and Jing-Hao Cui; investigation, Yaseen Hussain; resources, Yaseen Hussain and Amos Dormocara; writing-original draft preparation, Yaseen Hussain; Review and supervision, Haroon Khan and Jing-Hao Cui; funding acquisition, Jing-Hao Cui. All the authors have read and agreed to the published version of the manuscript.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

This project was funded by the National Natural Science Foundation of China (NSFC) (No. 81373333 and 81173005), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu, China, and Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases.

Declaration of competing interest

The authors have declared no conflict of interest.

Acknowledgments

Not applicable.

References

[1]

F. Osei-Yeboah, C.C. Sun, Validation and applications of an expedited tablet friability method, Int. J. Pharm. 484 (1-2) (2015) 146-155. https://doi.org/10.1016/j.ijpharm.2015.02.061.

[2]

C. Hare, et al., Impact breakage of pharmaceutical tablets, Int. J. Pharm. 536 (1) (2018) 370-376. https://doi.org/10.1016/j.ijpharm.2017.11.066.

[3]

F. Abay, T. Ugurlu, Orally disintegrating tablets: a short review, J. Pharm. Drug Dev. 3 (3) (2015) 303. http://dx.doi.org/10.15744/2348-9782.3.303.

[4]

J.J. Sheng, et al., Solubilization and dissolution of insoluble weak acid, ketoprofen: effects of pH combined with surfactant, Eur. J. Pharmaceut. Sci. 29 (3-4) (2006) 306-314. https://doi.org/10.1016/j.ejps.2006.06.006.

[5]

S. Rawat, S.K. Jain, Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes, Eur. J. Pharm. Biopharm. 57 (2) (2004) 263-267. https://doi.org/10.1016/j.ejpb.2003.10.020.

[6]

P. Hooper, et al., A new modified wetting test and an alternative disintegration test for orally disintegrating tablets, J. Pharmaceut. Biomed. Anal. 120 (2016) 391-396. https://doi.org/10.1016/j.jpba.2015.12.046.

[7]

D.J. Goodwin, et al., Real time release testing of tablet content and content uniformity, Int. J. Pharm. 537 (1-2) (2018) 183-192. https://doi.org/10.1016/j.ijpharm.2017.12.011.

[8]

H. Ghayour, M. Abdellahi, M. Bahmanpour, Optimization of the high energy ballmilling: modeling and parametric study, Powder Technol. 291 (2016) 7-13. https://doi.org/10.1016/j.powtec.2015.12.004.

[9]

M.K. Gupta, A. Vanwert, R.H. Bogner, Formation of physically stable amorphous drugs by milling with Neusilin, J. Pharmaceut. Sci. 92 (3) (2003) 536-551. https://doi.org/10.1002/jps.10308.

[10]

S. Mazumder, A.K. Dewangan, N. Pavurala, Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices, Asian J. Pharm. Sci. 12 (6) (2017) 532-541. https://doi.org/10.1016/j.ajps.2017.07.002.

[11]

B. Kumar, Solid dispersion-A review, Pharma 5 (2) (2017) 24-29.

[12]

J.-Y. Jung, et al., Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique, Int. J. Pharm. 187 (2) (1999) 209-218. https://doi.org/10.1016/S0378-5173(99)00191-X.

[13]

A. Brunaugh, H. Smyth, Process optimization and particle engineering of micronized drug powders via milling, Drug Deliv. Trans. Res. 8 (6) (2018) 1740-1750. https://doi.org/10.1007/s13346-017-0444-x.

[14]

T. Vasconcelos, et al., Amorphous solid dispersions: rational selection of a manufacturing process, Adv. Drug Deliv. Rev. 100 (2016) 85-101. https://doi.org/10.1016/j.addr.2016.01.012.

[15]

M. Baskaran, et al., Liquisolid compact technique for improving solid state stability and dissolution profile, J Drug Res Dev 2 (4) (2016), 2470-1009.123.

[16]

M. Baskaran, et al., Formulation development of atorvastatin calcium tablets by gel liquisolid compact technique for improving solid state stability and dissolution profile, J. Drug Res. Dev. 2 (4) (2016), 2470-1009. 123, https://doi.org/10.16966/2470-1009.123.

[17]

M. Khodadadi, et al., New anionic and cationic surfactants and their effects on relative permeability curves and wet ability alteration in EOR process, Journal for Modern Trends in Science and Technology 4 (3) (2018) 52-60.

[18]

M. Velmula, et al. Nanosuspension technology for poorly soluble drugs-a review, World J. Pharm. Pharmaceut. Sci. 4 (2015) 1612-1625.

[19]

S.A. Tayel, Soliman, D. Louis, Improvement of dissolution properties of Carbamazepine through application of the liquisolid tablet technique, Eur. J. Pharm. Biopharm. 69 (1) (2008) 342-347. https://doi.org/10.1016/j.ejpb.2007.09.003.

[20]

A.S. Kulkarni, J.B. Gaja, Formulation and evaluation of liquisolid compacts of diclofenac sodium, PDA J. Pharm. Sci. Technol. 64 (3) (2010) 222-232.

[21]

M. Khalid, M. Ahmed, I. Mohamed, Formulation and evaluation of rofecoxib liquisolid tablets, Int. J. Pharmaceut. Sci. Rev. Res. 3 (1) (2010) 135-142.

[22]

Q. Zhou, et al., Improving manufacturability of an ibuprofen powder blend by surface coating with silica nanoparticles, Powder Technol. 249 (2013) 290-296. https://doi.org/10.1016/j.powtec.2013.08.031.

[23]

M. Lu, et al., Dissolution enhancement of tadalafil by liquisolid technique, Pharmaceut. Dev. Technol. 22 (1) (2017) 77-89. https://doi.org/10.1080/10837450.2016.1189563.

[24]

A. Khan, et al., Discriminatory Dissolution Testing for Liquisolid Compacts Containing a Poorly Water-Soluble Drug (Hydrochlorothiazide), Dissolution Technol. (2019). https://doi.org/10.14227/DT260119P46.

[25]

S.W. Baertschi, K.M. Alsante, H.H. Tønnesen, A critical assessment of the ICH guideline on photostability testing of new drug substances and products (Q1B): recommendation for revision, J. Pharmaceut. Sci. 99 (7) (2010) 2934-2940. https://doi.org/10.1002/jps.22076.

[26]

A. Khames, Liquisolid technique: a promising alternative to conventional coating for improvement of drug photostability in solid dosage forms, Expet Opin. Drug Deliv. 10 (10) (2013) 1335-1343. https://doi.org/10.1517/17425247.2013.798297.

[27]

R. Pomponio, et al., Photostability studies on nicardipine-cyclodextrin complexes by capillary electrophoresis, J. Pharmaceut. Biomed. Anal. 35 (2) (2004) 267-275. https://doi.org/10.1016/S0731-7085(03)00532-6.

[28]

A. Courtois, et al., Encapsulation of ε-viniferin in onion-type multi-lamellar liposomes increases its solubility, its photo-stability and decreases its cytotoxicity on Caco-2 intestinal cells, Food Funct. 10 (5) (2019), 2573-82.

[29]

P.R. Kamble, K.S. Shaikh, P.D. Chaudhari, Application of liquisolid technology for enhancing solubility and dissolution of rosuvastatin, Adv. Pharmaceut. Bull. 4 (2) (2014) 197. https://doi.org/10.5681/apb.2014.029.

[30]

X. Yue, Z. Dai, Liposomal nanotechnology for cancer theranostics, Curr. Med. Chem. 25 (12) (2018) 1397-1408. https://doi.org/10.2174/0929867324666170306105350.

[31]

Y. Vikas, et al., Cyclodextrin complexes: an approach to improve the physicochemical properties of drugs and applications of cyclodextrin complexes, Asian J. Pharm. 12 (2) (2018) S394-S409.

[32]

A. Chamle, et al., Photodegradation of methylcobalamin and its determination in a commercial formulation, Indian J. Pharmaceut. Sci. 81 (1) (2019) 57-62. https://doi.org/10.4172/PHARMACEUTICAL-SCIENCES.1000479.

[33]

Y. Javadzadeh, et al., Effect of some commercial grades of microcrystalline cellulose on flowability, compressibility, and dissolution profile of piroxicam liquisolid compacts, Drug Dev. Ind. Pharm. 35 (2) (2009) 243-251. https://doi.org/10.1080/03639040802277672.

[34]

A. Nokhodchi, C.M. Hentzschel, C.S. Leopold, Drug release from liquisolid systems: speed it up, slow it down, Expet Opin. Drug Deliv. 8 (2) (2011) 191-205. https://doi.org/10.1517/17425247.2011.548801.

[35]

M. Van Speybroeck, et al., Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica, Eur. J. Pharmaceut. Sci. 41 (5) (2010) 623-630. https://doi.org/10.1016/j.ejps.2010.09.002.

[36]

B. Chen, et al., Hollow mesoporous silicas as a drug solution delivery system for insoluble drugs, Powder Technol. 240 (2013) 48-53. https://doi.org/10.1016/j.powtec.2012.07.008.

[37]

A.K. Saxena, et al., Pharmacological management of neuropathic pain in India: a consensus statement from Indian experts, Indian Journal of Pain 32 ( 3) (2018) 132. https://doi.org/10.4103/ijpn.ijpn_47_18.

[38]

C. Hentzschel, et al., Enhancement of griseofulvin release from liquisolid compacts, Eur. J. Pharm. Biopharm. 80 (1) (2012) 130-135. https://doi.org/10.1016/j.ejpb.2011.08.001.

[39]

W.-C. Liao, et al., Methylcobalamin facilitates collateral sprouting of donor axons and innervation of recipient muscle in end-to-side neurorrhaphy in rats, PLoS One 8 (9) (2013) e76302. https://doi.org/10.1016/j.ejpb.2011.08.001.

[40]

M. Liu, et al., Andrographolide liquisolid using porous-starch as the adsorbent with enhanced oral bioavailability in rats, J. Pharmaceut. Sci. 112 (2) (2023) 535-543. https://doi.org/10.1016/j.xphs.2022.08.033.

[41]

P.E. Rivas-Granizo, L. Giorgetti, H.G. Ferraz, Photostability of loratadine inclusion complexes with natural cyclodextrins, Int. J. Photoenergy 2015 (2015). https://doi.org/10.1155/2015/583052.

[42]

R. Agrawal, R. Maheshwari, Novel application of mixed solvency concept in the development of oral liquisolid system of a poorly soluble drug, cefixime and its evaluation, J. Drug Deliv. Therapeut. 8 (6-s) (2018) 5-8. https://doi.org/10.22270/jddt.v8i6-s.2167.

[43]

S. Jagtap, et al., Solubility enhancement technique: a review, J. Pharmaceut. Sci. Res. 10 (9) (2018) 2205-2211. https://doi.org/10.31838/ijpr/2021.13.03.121.

[44]

Y. Tong, et al., Systematic development of self-nanoemulsifying liquisolid tablets to improve the dissolution and oral bioavailability of an oily drug, vitamin K1, Pharmaceutics 10 (3) (2018) 96. https://doi.org/10.3390/pharmaceutics10030096.

[45]

M. Saeedi, et al., Controlling atorvastatin release from liquisolid systems, J. Dispersion Sci. Technol. (2020) 1-10. https://doi.org/10.1080/01932691.2020.1842211.

[46]

N.G. Naik, S.R. Sunder, S. kumar Manchikanti, A promising technique to improve the solubility by liquisolid compaction technology, J. Drug Deliv. Therapeut. 8 (5) (2018) 56-61. https://doi.org/10.22270/jddt.v8i5.1919.

[47]

D. Anzilaggo, et al., Liquisolid systems: understanding the impact of drug state (solution or dispersion), nonvolatile solvent and coating material on simvastatin apparent aqueous solubility and flowability, Colloids Surf. B Biointerfaces 175 (2019) 36-43. https://doi.org/10.1016/j.colsurfb.2018.11.044.

[48]

B. Shashidher, R.P. Veerareddy, Formulation and evaluation of carvedilol liquisolid tablets, African Journal of Pharmaceutical Sciences and Pharmacy 3 (1) (2012).

[49]

S. Pundir, A. Badola, D. Sharma, Sustained release matrix technology and recent advance in matrix drug delivery system: a review, International Journal of drug research and technology 3 (1) (2017) 8.

[50]

T. Khatik, et al., Development of Sustained Release Aceclofenac Lipid Matrix Tablet Using Continuous Melt Granulation Technique, Am. J. Pharm. Tech. Res. (2018). http://dx.doi.org/10.21276/ajptr.2018.08.03.20.

[51]

J. Shokri, K. Adibkia, Y. Javadzadeh, Liquisolid technology: what it can do for NSAIDs delivery? Colloids Surf. B Biointerfaces 136 (2015) 185-191. https://doi.org/10.1016/j.colsurfb.2015.09.014.

[52]

D.M. Shinkar, S.B. Aher, R.B. Saudagar, Design and development of liquisolid compact of carvedilol, Res. J. Pharm. Dosage Forms Technol. 7 (4) (2015) 243. http://dx.doi.org/10.5958/0975-4377.2015.00035.X.

[53]

B. Bonthagarala, et al., Quality-by-Design based development and characterization of pioglitazone loaded liquisolid compact tablets with improved biopharmaceutical attributes, J. Drug Deliv. Sci. Technol. 1 (51) (2019 Jun),345-55.

[54]

B. Bonthagarala, V. Dasari, V. Kotra, Solubility enhancement effect at absorption site on bioavailability of ritonavir using liquisolid technique, Ther. Deliv. 51 (2019). https://doi.org/10.1016/j.jddst.2019.03.033.

[55]

H.H. Tønnesen, Formulation and stability testing of photolabile drugs, Int. J. Pharm. 225 (1-2) (2001) 1-14. https://doi.org/10.1016/S0378-5173(01)00746-3.

[56]

G. Ramenskaya, et al., The dissolution test in biorelevant media as a prognostic tool for modeling of drug behavior in vivo, Biomed. Khim. 57 (5) (2011) 482-489. http://dx.doi.org/10.18097/PBMC20115705482.

[57]

M. Lu, et al., Liquisolid technique and its applications in pharmaceutics, Asian J. Pharm. Sci. 12 (2) (2017) 115-123. https://doi.org/10.1016/j.ajps.2016.09.007.

[58]

M. El-Hammadi, N. Awad, Investigating the use of liquisolid compacts technique to minimize the influence of pH variations on loratadine release, AAPS PharmSciTech 13 (1) (2012), 53-5, https://doi.org/10.1208/s12249-011-9719-6.

[59]

N. Chella, N. Narra, T. Rama Rao, Preparation and characterization of liquisolid compacts for improved dissolution of telmisartan, Journal of drug delivery 2014 (2014) 692793. https://doi.org/10.1155/2014/692793.

[60]

M.A. Badawy, A.O. Kamel, O.A. Sammour, Use of biorelevant media for assessment of a poorly soluble weakly basic drug in the form of liquisolid compacts: in vitro and in vivo study, Drug Deliv. 23 (3) (2016) 808-817. https://doi.org/10.3109/10717544.2014.917442.

[61]

S.Y. Al-Okbi, et al., Application of liquisolid technology for promoting the renoprotective efficacy of walnut extracts in chronic renal failure rat model, Drug Dev. Ind. Pharm. 45 (1) (2019) 32-42. https://doi.org/10.1080/03639045.2018.1515219.

[62]

U.B. Patel, C.N. Shah, H.M. Patel, Liquisolid compacts: an effective approach towards enhancement of dissolution rate of poorly soluble drugs, Pharma Sci. Monit. 9 (2) (2018).

[63]

E. Pavani, S. Noman, I.A. Syed, Liquisolid technique based sustained release tablet of trimetazidine dihydrochloride, Drug Invent. Today 5 (4) (2013) 302-310. https://doi.org/10.1016/j.dit.2013.08.006.

[64]

Y. Hussain, M.N. Shah, Liquisolid technique: a novel tool to develop aceclofenacloaded Eudragit L-100 and RS-100-based sustained release tablets, Journal of Pharmaceutical Innovation (2020) 1-13. https://doi.org/10.1007/s12247-020-09474-w.

[65]

M. Sanyang, et al., Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch, Polymers 7 (6) (2015) 1106-1124. https://doi.org/10.3390/polym7061106.

[66]

N. Jadhav, P. Irny, U. Patil, Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts, J. Drug Deliv. Sci. Technol. 38 (2017) 97-106. https://doi.org/10.1016/j.jddst.2017.01.009.

[67]

A. Butreddy, N. Dudhipala, Enhancement of solubility and dissolution rate of trandolapril sustained release matrix tablets by liquisolid compact approach, Asian Journal of Pharmaceutic_ Oct-Dec 9 (4) (2015) 1.

[68]

A.B. Karmarkar, et al., Evaluation of in vitro dissolution profile comparison methods of sustained release tramadol hydrochloride liquisolid compact formulations with marketed sustained release tablets, Drug discoveries & therapeutics 4 (1) (2010).

[69]

Y. Javadzadeh, L. Musaalrezaei, A. Nokhodchi, Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices, Int. J. Pharm. 362 (1-2) (2008) 102-108. https://doi.org/10.1016/j.ijpharm.2008.06.022.

[70]

A.A. Elkordy, et al., Liquisolid technique to enhance and to sustain griseofulvin dissolution: effect of choice of non-volatile liquid vehicles, Int. J. Pharm. 434 (1-2) (2012) 122-132. https://doi.org/10.1016/j.ijpharm.2012.05.072.

[71]

M. Khanfar, M. Sheikh Salem, F. Kaddour, Preparation of sustained-release dosage form of Venlafaxine HCl using liquisolid technique, Pharmaceut. Dev. Technol. 19 (1) (2014) 103-115. https://doi.org/10.3109/10837450.2012.757785.

[72]

A. Nokhodchi, et al., Liquisolid compacts: the effect of cosolvent and HPMC on theophylline release, Colloids Surf. B Biointerfaces 79 (1) (2010) 262-269. https://doi.org/10.1016/j.colsurfb.2010.04.008.

[73]

M. Saeedi, et al., Enhancement of dissolution rate of indomethacin: using liquisolid compacts, Iran. J. Pharm. Res. (IJPR): Int. J. Phys. Res. 10 (1) (2011) 25. https://doi.org/10.1016/j.colsurfa.2017.12.034.

[74]

J. Baranauskaite, et al., Effect of liquid vehicles on the enhancement of rosmarinic acid and carvacrol release from oregano extract liquisolid compacts, Colloids Surf. A Physicochem. Eng. Asp. 539 (2018) 280-290. https://doi.org/10.1016/j.colsurfa.2017.12.034.

[75]

S.M. Latha, et al., Formulation and comparative evaluation of aceclofenac tablets by two granulation methods, Magnesium 4 (4.5) (2016) 4-5. https://doi.org/10.1016/j.colsurfa.2017.12.034.

[76]

A.D. Savkare, et al., Liquisolid technique: a review, Int. J. Pharma Sci. Res. 8 (7) (2017) 2768-2775. http://dx.doi.org/10.37285/ijpsn.2010.3.1.1.

[77]

S. Vaskula, et al., Liquisolid compacts: an approach to enhance the dissolution rate of nimesulide, J. Appl. Pharmaceut. Sci. 2 (5) (2012) 115. http://dx.doi.org/10.7324/JAPS.2012.2520.

[78]

K. Koga, et al., Enhancing mechanism of Labrasol on intestinal membrane permeability of the hydrophilic drug gentamicin sulfate, Eur. J. Pharm. Biopharm. 64 (1) (2006) 82-91. https://doi.org/10.1016/j.ejpb.2006.03.011.

[79]

J.M. Unagolla, A.C. Jayasuriya, Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system, Eur. J. Pharmaceut. Sci. 114 (2018) 199-209. https://doi.org/10.1016/j.ejps.2017.12.012.

[80]

S. Spireas, S. Sadu, Enhancement of prednisolone dissolution properties using liquisolid compacts, Int. J. Pharm. 166 (2) (1998) 177-188. https://doi.org/10.1016/S0378-5173(98)00046-5.

[81]

R.J. Dias, et al., Formulation and evaluation of carbamazepine liquisolid compacts using novel carriers, Indian J Pharm Educ Res 51 (S2) (2017) S69-S78. http://d x.doi.org/10.5530/ijper.51.2s.52.

[82]

A.B. Patil, N. Bangera, Formulation and characterization of liquisolid tablet of skeletal muscle relaxants and anti-inflammatory drugs, Res. Rev.: A Journal of Drug Formulation, Development and Production 2 ( 2) (2019) 6-14.

[83]

H.P. Thakkar, et al., Formulation and evaluation of liquisolid compacts of itraconazole to enhance its oral bioavailability, Ther. Deliv. 11 (2) (2020) 83-96. https://doi.org/10.4155/tde-2019-0050.

[84]

A.A. Garud, R.R. Shah, Formulation and optimization of liquisolid tablets of olmesartan medoxomil using 3 (2) factorial design, Int. J. Pharmaceut. Sci. Res. 8 (11) (2017) 4682-4693.

[85]

T.N. Aparna, A.S. Rao, Liquisolid compacts: an approach to enhance the dissolution rate of domperidone, World J. Pharm. Pharmaceut. Sci. 6 (7) (2017) 1219-1232.

[86]

N. Tiong, A.A. Elkordy, Effects of liquisolid formulations on dissolution of naproxen, Eur. J. Pharm. Biopharm. 73 (3) (2009) 373-384. https://doi.org/10.1016/j.ejpb.2009.08.002.

[87]

S. Gubbi, R. Jarag, Liquisolid technique for enhancement of dissolution properties of bromhexine hydrochloride, Res. J. Pharm. Technol. 2 (2) (2009) 382-386.

[88]

N. Chella, N. Shastri, R.R. Tadikonda, Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan, Acta Pharm. Sin. B 2 (5) (2012) 502-508. https://doi.org/10.1016/j.apsb.2012.07.005.

[89]

M. Kaur, Enhancement of dissolution properties of amlodipine besylate using liquisolid technique, Int. J. Pharm. Pharmaceut. Sci. 5 (3) (2013) 394-400.

[90]

Y. Javadzadeh, et al., Enhancement of dissolution rate of piroxicam using liquisolid compacts, Il Farmaco 60 (4) (2005) 361-365. https://doi.org/10.1016/j.farmac.2004.09.005.

[91]

M.-A. Molaei, et al., Enhancement of ketoconazole dissolution rate by the liquisolid technique, Acta Pharm. 68 (3) (2018) 325-336. https://doi.org/10.2478/acph-2018-0025.

[92]

K. Parmar, J. Patel, N. Sheth, Fabrication and characterization of liquisolid compacts of Embelin for dissolution enhancement, Journal of Pharmaceutical Investigation 44 ( 5) (2014) 391-398. https://doi.org/10.1007/s40005-014-0134-3.

[93]

V.S. Kumar, J. Rijo, M. Sabitha, Guargum and Eudragit® coated curcumin liquid solid tablets for colon specific drug delivery, Int. J. Biol. Macromol. 110 (2018) 318-327. https://doi.org/10.1016/j.ijbiomac.2018.01.082.

[94]

T.M. Ibrahim, et al., Upgrading of dissolution and anti-hypertensive effect of Carvedilol via two combined approaches: self-emulsification and liquisolid techniques, Drug Dev. Ind. Pharm. 44 (6) (2018) 873-885. https://doi.org/10.1080/03639045.2017.1417421.

[95]

R. Gouda, H. Baishya, Z. Qing, Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets, J. Dev. Drugs 6 (2) (2017). http ://dx.doi.org/10.4172/2329-6631.1000171.

[96]

A. Alghunaim, S. Kirdponpattara, B.-m.Z. Newby, Techniques for determining contact angle and wettability of powders, Powder Technol. 287 (2016) 201-215. https://doi.org/10.1016/j.powtec.2015.10.002.

[97]

K. Adibkia, et al., Effect of solvent type on retardation properties of diltiazem HCl form liquisolid tablets, Colloids Surf. B Biointerfaces 113 (2014) 10-14. https://doi.org/10.1016/j.colsurfb.2013.08.017.

[98]

S. Ahirrao, B.D. Gangode, S. Kshirsagar, Solubility enhancement of ritonavir by using liquisolid compact technique, Asian Journal of Pharmacy and Technology 7 (4) (2017) 189-201. http://dx.doi.org/10.5958/2231-5713.2017.00030.7.

[99]

I. Khan, et al. Liquisolid technology: a novel concept, Asian J. Pharmaceut. Res. Dev. (, 2017) 1-7.

[100]

V. Kumar, A. Rajalakshmi, P. Stephen, Formulation and evaluation of Orodispersible liquisolid compacts of Nifedipine using co-processed Superdisintegrants, Asian J. Pharm. Pharmacol. 4 (4) (2018) 505-513. http://dx.doi.org/10.31024/ajpp.2018.4.4.19.

[101]

N. Vageesh, et al., Preparation and in vitro charactersation of fast disintigrating tablets of cimetidine, Innovat International Journal Of Medical & Pharmaceutical Sciences 2 (4) (2017). http://dx.doi.org/10.5958/2231-5659.2017.00023.6.

[102]

F.I. Shaikh, Solubility Enhancement and Dissolution Method Development of some poorly soluble drugs, GUJARAT TECHNOLOGICAL UNIVERSITY AHMEDABAD, 2017.

[103]

L. Lalani, et al., Liquisolid compact approach to enhance dissolution rate of poorly soluble drugs: a recent research review, Pharma Sci. Monit. 9 (1) (2018).

[104]

F. Abay, T. Ugurlu, Orally disintegrating tablets: a short review, J. Pharmaceut. Drug Dev. 3 (3) (2015) 1. http://dx.doi.org/10.15744/2348-9782.3.303.

[105]

S.A. Tayel, I.I. Soliman, D. Louis, Improvement of dissolution properties of carbamazepine through application of the liquisolid tablet technique, Eur. J. Pharm. Biopharm. 69 (1) (2008) 342-347. https://doi.org/10.1016/j.ejpb.2007.09.003.

[106]

A.S. Suliman, Preparation and Evaluation of Different Liquisolid Compacts Containing Model Hydrophobic Drugs: Norfloxacin and CCinnarizine, University of Sunderland, 2016.

[107]

X. Liu, et al., Liquisolid technique for enhancement of dissolution prosperities of tanshinone II (A), Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica 40 (24) (2015) 4840-4846.

[108]

S.R. Gubbi, R. Jarag, Formulation and characterization of atorvastatin calcium liquisolid compacts, Asian J. Pharm. Sci. 5 (2) (2010) 50-60.

[109]

M. Khalid, M. Ahmed, I. Mohamed, Formulation and evaluation of rofecoxib liquisolid tablets, Int. J. Pharmaceut. Sci. Rev. Res. 3 (1) (2010) 135-142.

[110]

F.J. Sayyad, S.L. Tulsankar, U.B. Kolap, Design and development of liquisolid compact of candesartan cilexetil to enhance dissolution, J. Pharm. Res. 7 (5) (2013) 381-388. https://doi.org/10.1016/j.jopr.2013.05.012.

[111]

G.V. Vittal, et al., Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design, Int. J. Pharmaceut. Invest. 2 (3) (2012) 150. https://doi.org/10.4103/2230-973X.104398.

[112]

A.A. Elkordy, X.N. Tan, E.A. Essa, Spironolactone release from liquisolid formulations prepared with CapryolTM 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles, Eur. J. Pharm. Biopharm. 83 (2) (2013) 203-223. https://doi.org/10.1016/j.ejpb.2012.08.004.

[113]

E. Jassim, Formulation and evaluation of furosemide liquisolid compact, Int. J. Appl. Pharm. 6 (2017) 39-48.

[114]

S. Burra, S. Kudikala, G.J. Reddy, Formulation and evaluation of Simvastatin liquisolid tablets, Der Pharm. Lett. 3 (2) (2011) 419-426.

[115]

A. Butreddy, N. Dudhipala, Enhancement of solubility and dissolution rate of trandolapril sustained release matrix tablets by liquisolid compact approach, Asian J. Pharm. 9 (1) (2015).

[116]

K.A. Khaled, Y.A. Asiri, Y.M. El-Sayed, In vivo evaluation of hydrochlorothiazide liquisolid tablets in beagle dogs, Int. J. Pharm. 222 (1) (2001) 1-6. https://doi.org/10.1016/S0378-5173(01)00633-0.

[117]

A.D. Savkare, et al., Liquisolid technique: a review, Int. J. Pharmaceut. Sci. Res. 8 (7) (2017) 2768-2775. http://dx.doi.org/10.37285/ijpsn.2010.3.1.1.

[118]

S.A. Yehia, et al., Enhancement of the oral bioavailability of fexofenadine hydrochloride via Cremophor® El-Based liquisolid tablets, Adv. Pharmaceut. Bull. 5 (4) (2015) 569. https://doi.org/10.15171/apb.2015.077.

[119]

R.J. Dias, et al., Liquisolid compacts of meloxicam: in-vitro and in-vivo evaluation, Egypt Pharm. J. 16 (2) (2017) 112. http://dx.doi.org/10.4103/epj.epj_9_17.

[120]

B. Bonthagarala, et al., Quality-by-Design based development and characterization of pioglitazone loaded liquisolid compact tablets with improved biopharmaceutical attributes, J. Drug Deliv. Sci. Technol. 51 (2019) 345-355. https://doi.org/10.1016/j.jddst.2019.03.033.

[121]

S.Y. Al-Okbi, et al., Application of liquisolid technology for promoting the renoprotective efficacy of walnut extracts in chronic renal failure rat model, Drug Dev. Ind. Pharm. (2018) 1-49 (just-accepted), https://doi.org/10.1080/03639045.2018.1515219.

[122]

N. Jaipakdee, et al., Preparation of Curcuma comosa tablets using liquisolid techniques: in vitro and in vivo evaluation, Int. J. Pharm. 553 (1-2) (2018 Dec 20),157-68.

[123]

D. Mahmoud Mostafa, et al., Boswellia carterii liquisolid systems with promoted anti-inflammatory activity, Curr. Drug Deliv 12 (4) (2015) 454-463, https://doi.org/10.2174/1567201812666150421111627.

[124]

P.V. Kumar, A. Rajalakshmi, P. Stephen, Orodispersible liquisolid compacts: a novel approach to enhance solubility and bioavailability, J Pharm Adv Res 1 (4) (2018) 217-223.

[125]

E.B. Basalious, W. El-Sebaie, O. El-Gazayerly, Rapidly absorbed orodispersible tablet containing molecularly dispersed felodipine for management of hypertensive crisis: development, optimization and in vitro/in vivo studies, Pharmaceut. Dev. Technol. 18 (2) (2013) 407-416. https://doi.org/10.3109/10837450.2012.659258.

[126]

H.A. Moqbel, A.N. ElMeshad, M.A. El-Nabarawi, Comparative study of different approaches for preparation of chlorzoxazone orodispersible tablets, Drug Dev. Ind. Pharm. 43 (5) (2017) 742-750. https://doi.org/10.1080/03639045.2016.1225753.

[127]

M. Egla, S.N.A.A. Hammid, Design zolmitriptan liquisolid orodispersible tablets and their in vitro evaluation, Int J Pharm Sci 9 (2016) 297-303.

[128]

R. Shah, H. Banwait, S.P.P. Rathi, Liquisolid Compacts Based Orodispersible Tablets to Enhance Solubility of Atorvastatin Using Experimental Design, 2010, pp. 18-28. J.

[129]

P. Barmpalexis, et al., Development of a new aprepitant liquisolid formulation with the aid of artificial neural networks and genetic programming, AAPS PharmSciTech 19 (2) (2018) 741-752. https://doi.org/10.1208/s12249-017-0893-z.

AI Summary AI Mindmap
PDF (1053KB)

489

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/