Additive manufacturing in nano drug delivery systems

Md. Habibur Rahman , Nilufar Yasmin Liza , Khan Rajib Hossain , Dipika Ramdas Kalambhe , Md. Abu Shyeed , Dilwar Hossain Noor

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100036

PDF (5104KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100036 DOI: 10.1016/j.pscia.2024.100036
Review Article
research-article

Additive manufacturing in nano drug delivery systems

Author information +
History +
PDF (5104KB)

Abstract

The adoption of innovative mixing and fabrication technologies in the pharmaceutical industry has inspired research on nano-drugs and expanded the scope of study in the field. Researchers' interest in the recently discovered drug delivery nanoparticles has increased significantly. This interest is especially seen in the specific preparation of nanoparticles as drug carriers through the use of three-dimensional (3D) printing, a modern additive manufacturing (AM) technology. The benefits of 3D printing, especially at the nanoscale, make it an innovative technology that could revolutionize the pharmaceutical and regenerative medicine industries. The laborious creation of intricate structures made possible by nanoscale 3D printing brings up the possibility of developing nanomedicine and producing functioning tissues and organs. The uses of AM in nano drug delivery systems (NDDS) are highlighted in this study, with a focus on how it can improve drug release kinetics, enhance therapeutic efficacy, and minimize side effects. A new era of personalized medicine has begun with the development of patient-specific formulations made possible by the customization capabilities of 3D printing. This review discusses the various uses of AM in NDDS while addressing issues including scalability, biocompatibility, and regulatory concerns. This review highlights the developing integration between AM and nanotechnology in medicine delivery and discusses ongoing research activities and possible solutions. As this innovative technology develops further, it has the potential to completely change the pharmaceutical development field by providing fresh approaches to the complex problems of contemporary healthcare and advancing the ideas behind drug delivery.

Keywords

3D printing / Nano drug / Delivery / Hydrogels / Nanoparticles

Cite this article

Download citation ▾
Md. Habibur Rahman, Nilufar Yasmin Liza, Khan Rajib Hossain, Dipika Ramdas Kalambhe, Md. Abu Shyeed, Dilwar Hossain Noor. Additive manufacturing in nano drug delivery systems. Pharmaceutical Science Advances, 2024, 2(1): 100036 DOI:10.1016/j.pscia.2024.100036

登录浏览全文

4963

注册一个新账户 忘记密码

Credit authorship contribution statement

Md. Habibur Rahman completed the writing task; Nilufar Yasmin Liza completed the literature search and screening; Md. Abu Shyeed wrote and reviewed the manuscript; Dipika Ramdas Kalambhe checked and reviewed the writing quality of the article; Dilwar Hossain Noor oversaw resources and reviewing; Khan Rajib Hossain determined the direction and content composition of the article and checked and reviewed the writing quality of the article. All authors have reviewed and approved the final manuscript, attesting to its accuracy and their collective commitment to the review.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

No agency funding was used in the drafting of this manuscript.

Declaration of interest

The authors declared that they have no involvement of affiliations with any financial institution or entity with any financial or non-financial interest in the contents discussed in this manuscript. The authors also do not have any conflict of interest.

Acknowledgments

With the extraordinary assistance of my mentor, Khan Rajib Hossain, this review that underpinned it was feasible. I want to thank the following co-authors for their knowledge and assistance in all facets of our work and for their aid in authoring the manuscript. The authors appreciate the efforts of Md. Abu Shyeed and Nilufar Yasmin Liza for checking and reviewing the writing quality of the article. We should thank Dilwar Hossain Noor and Dipika Ramdas Kalambhe for their advice and reviewing on preparing the manuscript.

References

[1]

K.R. Hossain, M.M. Jami, A. Shyeed, K. Khatun, K. Hasan, K. Cobra, F. Ahmed, Application of 3D printing in medicine: technologies and challenges, Al-Bahir J. Eng. Pure Sci. 3 (1) (2023) 7. https://doi.org/10.55810/2313-0083.1036.

[2]

K.R. Hossain, M.M.A. Shishir, S. Rashid, M.H. Ahmed, A. Basher, R.H. Risad, A.C. Paul,Application of 3D printing technology in the military, https://doi.org/10.22034/jchemlett.2023.395069.1113.

[3]

T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. B Eng. 143 (2018) 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012.

[4]

K.R. Hossain, P. Jiang, X. Yao, X. Yang, D. Hu, X. Wang, Ionic liquids for 3D printing: fabrication, properties, applications, J. Ionic Liquids (2023) 100066. https://doi.org/10.1016/j.jil.2023.100066.

[5]

J. Dos Santos, R.S. de Oliveira, T.V. de Oliveira, M.C. Velho, M.V. Konrad, G.S. da Silva, R.C. Beck, 3D printing and nanotechnology: a multiscale alliance in personalized medicine, Adv. Funct. Mater. 31 (16) (2021) 2009691. https://doi. org/10.1002/adfm.202009691.

[6]

V. Jain, N. Haider, K. Jain, 3D printing in personalized drug delivery, Curr. Pharmaceut. Des. 24 (42) (2018) 5062-5071. https://doi.org/10.2174/1381612825666190215122208.

[7]

M.A. Azad, D. Olawuni, G. Kimbell, A.Z.M. Badruddoza, M.S. Hossain, T. Sultana, Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective, Pharmaceutics 12 (2) (2020) 124. https://doi.org/10.3390/pharmaceutics12020124.

[8]

K. Sathish, S.S. Kumar, R.T. Magal, V. Selvaraj, V. Narasimharaj, R. Karthikeyan, A.E. Kassa, A comparative study on subtractive manufacturing and additive manufacturing, Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/6892641.

[9]

J.S. Akmal, M. Salmi, A. Mäkitie, R. Björkstrand, J. Partanen, Implementation of industrial additive manufacturing: intelligent implants and drug delivery systems, J. Funct. Biomater. 9 (3) (2018) 41. https://doi.org/10.3390/jfb9030041.

[10]

A.J. Sheoran, H. Kumar, P.K. Arora, G. Moona, Bio-medical applications of additive manufacturing: a review, Procedia Manuf 51 (2020) 663-670. https://doi.org/10.1016/j.promfg.2020.10.093.

[11]

K.C. Kwan, F.O. Swart, A.M. Mattocks, Factors affecting tablet disintegration, J. Am. Pharm. Assoc. JAPhA 46 (4) (1957) 236-239. https://doi.org/10.1002/jps.3030460411.

[12]

S. Wang, X. Chen, X. Han, X. Hong, X. Li, H. Zhang, A. Zheng, A review of 3D printing technology in pharmaceutics: technology and applications, now and future, Pharmaceutics 15 (2) (2023) 416. https://doi.org/10.3390/pharmaceutics15020416.

[13]

S. Deshmane, P. Kendre, H. Mahajan, S. Jain, Stereolithography 3D printing technology in pharmaceuticals: a review, Drug Dev. Ind. Pharm. 47 (9) (2021) 1362-1372. https://doi.org/10.1080/03639045.2021.1994990.

[14]

K.R. Hossain, P. Jiang, X. Yao, J. Wu, D. Hu, X. Yang, X. Wang, Additive manufacturing of polymer-based lubrication, Macromol. Mater. Eng. (2023) 2300147. https://doi.org/10.1002/mame.202300147.

[15]

S. Bandari, D. Nyavanandi, N. Dumpa, M.A. Repka, Coupling hot melt extrusion and fused deposition modeling: critical properties for successful performance, Adv. Drug Deliv. Rev. 172 (2021) 52-63. https://doi.org/10.1016/j.addr.2021.02.006.

[16]

N. Dumpa, A. Butreddy, H. Wang, N. Komanduri, S. Bandari, M.A. Repka, 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling, Int. J. Pharm. 600 (2021) 120501. https://doi.org/10.1016/j.ijpharm.2021.120501.

[17]

D.K. Tan, M. Maniruzzaman, A. Nokhodchi, Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery, Pharmaceutics 10 (4) (2018) 203. https://doi.org/10.3390/pharmaceutics10040203.

[18]

A. Melocchi, F. Parietti, A. Maroni, A. Foppoli, A. Gazzaniga, L. Zema, Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling, Int. J. Pharm. 509 (1-2) (2016) 255-263. https://doi. org/10.1016/j.ijpharm.2016.05.036.

[19]

A.L. Sarode, H. Sandhu, N. Shah, W. Malick, H. Zia, Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation, Eur. J. Pharmaceut. Sci. 48 (3) (2013) 371-384. https://doi.org/10.1016/j.ejps.2012.12.012.

[20]

Y. Zheng, F. Deng, B. Wang, Y. Wu, Q. Luo, X. Zuo, X. Li, Melt extrusion deposition (MEDTM) 3D printing technology-A paradigm shift in design and development of modified release drug products, Int. J. Pharm. 602 (2021) 120639. https://doi.org/10.1016/j.ijpharm.2021.120639.

[21]

L.J. Peek, C.R. Middaugh, C. Berkland, Nanotechnology in vaccine delivery, Adv. Drug Deliv. Rev. 60 (8) (2008) 915-928. https://doi.org/10.1016/j.addr.2007.05.017.

[22]

X. Zhang, W. Zhu, G. He, P. Zhang, Z. Zhang, I.P. Parkin, Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie-Baxter state, J. Mater. Chem. A 4 (37) (2016) 14180-14186. https://doi.org/10.1039/C6TA06493K.

[23]

B. Mittler, Dangerous Tunes:the Politics of Chinese Music in Hong Kong, Taiwan, and the People’s Republic of China since 1949, vol. 3, Otto Harrassowitz Verlag, 1997. https://doi.org/10.2307/2659523.

[24]

B.M. Rayaprolu, J.J. Strawser, G. Anyarambhatla, Excipients in parenteral formulations: selection considerations and effective utilization with small molecules and biologics, Drug Dev. Ind. Pharm. 44 (10) (2018) 1565-1571. https://doi.org/10.1080/03639045.2018.1483392.

[25]

G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, S.K. Bannerjee, Drug delivery systems: an updated review, Int. J. Pharm. Investig. 2 (1) (2012) 2. https://doi.org/10.4103/2230-973X.96920.

[26]

T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream, Science 303 (5665) (2004) 1818-1822. https://doi.org/10.1126/science.1095833.

[27]

R.K. Tekade, Basic Fundamentals of Drug Delivery, Academic Press, 2018. https://doi.org/10.1016/C2018-0-03215-6.

[28]

A.P. Singh, A. Biswas, A. Shukla, P. Maiti, Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles, Signal Transduct. Targeted Ther. 4 (1) (2019) 33. https://doi.org/10.1038/s41392-019-0068-3.

[29]

G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, S.K. Bannerjee, Drug delivery systems: an updated review, Int. J. Pharm. Investig. 2 (1) (2012) 2,. https://doi.org/10.4103/2230-973X.96920.

[30]

C. Zheng, X. Xie, A microfluidic chip designed for stimulating drug diffusion, J. Student Res. 11 (2) (2022). https://doi.org/10.47611/jsrhs.v11i2.2644.

[31]

K. Park, Controlled drug delivery systems: past forward and future back, J. Contr. Release 190 (2014) 3-8. https://doi.org/10.1016/j.jconrel.2014.03.054.

[32]

J.W. Scannell, A. Blanckley, H. Boldon, B. Warrington, Diagnosing the decline in pharmaceutical R&D efficiency, Nat. Rev. Drug Discov. 11 (3) (2012) 191-200. https://doi.org/10.1038/nrd3681.

[33]

J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, H.S. Shin, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol. 16 (1) (2018) 1-33. https://doi.org/10.1186/s12951-018-0392-8.

[34]

K.R. Hossain, M.A. Shyeed, M. Al Amin, M.S. Hossain, M.S. Rahman, M.H. Rahman, C. Nasreen, Nanomaterials function in additive manufacturing, J. Kufa-Physics 15 (2) (2023) 23-39. https://doi.org/10.31257/2018/JKP/2023/v15.i02.13538.

[35]

S. Lata, G. Sharma, M. Joshi, P. Kanwar, T. Mishra, Role of nanotechnology in drug delivery, Int. J. Nanotechnol. Nanosci. 5 (2017) 1-29, dx, https://doi.org/10.20530/IJNN363.

[36]

P. Pandey, R. Pal, M. Rizwan, A. Saxena, M. Koli, L. Nogai, N. Kumar,The recent approaches in nano-technology with applications of 3-d printing (3dp) in diverse advanced drug delivery system (DDS), https://doi.org/10.48047/ecb/2023.12.si10.00510.

[37]

D.S. Benoit, C.T. Overby, K.R. Sims Jr. M. A. Ackun-Farmmer, Drug delivery systems, Biomaterials Science, Academic Press, 2020, pp. 1237-1266, https://doi.org/10.1016/B978-0-12-816137-1.00078-7.

[38]

G.M. Vlásceanu, H. Iovu, M. Ioniţá, Graphene inks for the 3D printing of cell culture scaffolds and related molecular arrays, Compos. B Eng. 162 (2019) 712-723. https://doi.org/10.1016/j.compositesb.2019.01.010.

[39]

R. Bernasconi, N. Favara, N. Fouladvari, M. Invernizzi, M. Levi, S. Pané, L. Magagnin, Nanostructured polypyrrole layers implementation on magnetically navigable 3D printed microdevices for targeted gastrointestinal drug delivery, Multifunct. Mater. 3 (4) (2020) 045003. https://doi.org/10.1088/2399-7532/abc735.

[40]

X. Tian, L. Wu, D. Gu, S. Yuan, Y. Zhao, X. Li, D. Li, Roadmap for additive manufacturing: toward intellectualization and industrialization, Chin. J. Mech. Eng.: Additive Manuf. Front. 1 (1) (2022) 100014. https://doi.org/10.1016/j.cjmeam.2022.100014.

[41]

G. Traverso, C.M. Schoellhammer, A. Schroeder, R. Maa, G.Y. Lauwers, B.E. Polat, R. Langer, Microneedles for drug delivery via the gastrointestinal tract, J. Pharmaceut. Sci. 104 (2) (2015) 362-367. https://doi.org/10.1002/jps.24182.

[42]

M.D. Dickey, Shaped after print, Nat. Mater. 15 (4) (2016) 379-380. https://doi.o rg/10.1038/nmat4608.

[43]

M.K. Gupta, F. Meng, B.N. Johnson, Y.L. Kong, L. Tian, Y.W. Yeh, M.C. McAlpine, 3D printed programmable release capsules, Nano Lett 15 (8) (2015) 5321-5329. https://doi.org/10.1021/acs.nanolett.5b01688.

[44]

Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, B. Ding, DNA origami as a carrier for circumvention of drug resistance, J. Am. Chem. Soc. 134 (32) (2012) 13396-13403. https://doi.org/10.1021/ja304263n.

[45]

W.K. Hsiao, B. Lorber, H. Reitsamer, J. Khinast, 3D printing of oral drugs: a new reality or hype? Expet Opin. Drug Deliv. 15 (1) (2018) 1-4. https://doi.org/10.1080/17425247.2017.1371698.

[46]

S.J. Trenfield, C.M. Madla, A.W. Basit, S. Gaisford, Binder Jet Printing in Pharmaceutical Manufacturing, 3D Printing of Pharmaceuticals, 2018, pp. 41-54. https://doi.org/10.1007/978-3-319-90755-0_3.

[47]

E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (7) (2006) 583-592. https://doi.org/10.1039/B502142C.

[48]

J. Han, D. Zhao, D. Li, X. Wang, Z. Jin, K. Zhao, Polymer-based nanomaterials and applications for vaccines and drugs, Polymers 10 (1) (2018) 31, https://doi.org/10.3390/polym10010031.

[49]

A. Fernandez-Fernandez, R. Manchanda, A.J. McGoron, Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms, Appl. Biochem. Biotechnol. 165 (2011) 1628-1651. https://doi.org/10.1007/s12010-011-9383-z.

[50]

M.X. Zhao, B.J. Zhu, The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy, Nanoscale Res. Lett. 11 (2016) 1-9. https://doi.org/10.1186/s11671-016-1394-9.

[51]

M. Pandey, H. Choudhury, J.L.C. Fern, A.T.K. Kee, J. Kou, J.L.J. Jing, B. Gorain, 3D printing for oral drug delivery: a new tool to customize drug delivery, Drug Deliv. Transl. Res. 10 (2020) 986-1001. https://doi.org/10.1007/s13346-020-00737-0.

[52]

P.K. Sharma, D. Choudhury, V. Yadav, U.S.N. Murty, S. Banerjee, 3D printing of nanocomposite pills through desktop vat photopolymerization (stereolithography) for drug delivery reasons, 3D Print, Méd 8 (1) (2022) 1-10. https://doi.o rg/10.1186/s41205-022-00130-2.

[53]

P. Erfle, J. Riewe, S. Cai, H. Bunjes, A. Dietzel, Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles, Lab Chip 22 (16) (2022) 3025-3044. https://doi.org/10.1039/D2LC00240J.

[54]

A. Dietzel, Microsystems for Pharmatechnology, vol. 1007, Springer, Cham, 2016, 978-3, https://doi.org/10.1007/978-3-319-26920-7.

[55]

K. Göke, T. Lorenz, A. Repanas, F. Schneider, D. Steiner, K. Baumann. A. Kwade, Novel strategies for the formulation and processing of poorly water-soluble drugs, Eur. J. Pharm. Biopharm. 126 (2018) 40-56. https://doi.org/10.1016/j.ejpb.2017.05.008.

[56]

R. Mestre, T. Patiño, S. Sánchez, Biohybrid robotics: from the nanoscale to the macroscale, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13 (5) (2021) e1703. https://doi.org/10.1002/wnan.1703.

[57]

V.Y. Prinz, K.B. Fritzler, 3D printed biohybrid microsystems, Adv. Mater. Technol. 8 (2) (2023) 2101633. https://doi.org/10.1002/admt.202101633.

[58]

P. Shrimal, G. Jadeja, S. Patel, Ultrasonic enhanced emulsification process in 3D printed microfluidic device to encapsulate active pharmaceutical ingredients, Int. J. Pharm. 620 (2022) 121754. https://doi.org/10.1016/j.ijpharm.2022.121754.

[59]

X. Ke, L. He, R. Wang, J. Shen, Z. Wang, Y. Shen, H. Qi, miR-377-3p-Mediated EGR1 downregulation Promotes B [a] P-induced lung tumorigenesis by Wnt/Beta-catenin transduction, Front. Oncol. 11 (2021) 699004. https://doi.org/10.3389/fonc.2021.699004.

[60]

X. Sun, Z. Ma, X. Zhao, W. Jin, C. Zhang, J. Ma, J. Wang, Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus, Bioact. Mater. 6 (3) (2021) 757-769. https://doi.org/10.1016/j.bioactmat.2020.08.030.

[61]

A. Awad, F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Advances in powder bed fusion 3D printing in drug delivery and healthcare, Adv. Drug Deliv. Rev. 174 (2021) 406-424. https://doi.org/10.1016/j.addr.2021.04.025.

[62]

F. Abedi, P. Ghandforoushan, F. Adeli, M. Yousefnezhad, A. Mohammadi S. V. Moghaddam, S. Davaran, Development of stimuli-responsive nanogels as drug carriers and their biomedical application in 3D printing, Mater. Today Chem. 29 (2023) 101372. https://doi.org/10.1016/j.mtchem.2022.101372.

[63]

S. Chen, Q. Shi, T. Jang, M.S.B. Ibrahim, J. Deng, G. Ferracci, J. Song, Engineering natural pollen grains as multifunctional 3D printing materials, Adv. Funct. Mater. 31 (49) (2021) 2106276. https://doi.org/10.1002/adfm.202106276.

[64]

M.R. Khatun, A. Bhattacharyya, M. Gunbayar, M. Jung, I. Noh, Study on bioresponsive gelatin-hyaluronic acid-genipin hydrogel for high cell-density 3D bioprinting, Gels 9 (8) (2023) 601. https://doi.org/10.3390/gels9080601.

[65]

K.A. Deo, K.A. Singh, C.W. Peak, D.L. Alge, A.K. Gaharwar, Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds, Tissue Eng 26 (5-6) (2020) 318-338. https://doi.org/10.1089/ten.tea.2019.0298.

[66]

Y. Han, S. Li, X. Cao, L. Yuan, Y. Wang, Y. Yin, X. Wang, Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo, Sci. Rep. 4 (1) (2014) 7134. https://doi.org/10.1038/srep07134.

[67]

Z. Li, J. Tang, H. Wu, Z. Ling, S. Chen, Y. Zhou, X. Zhang, A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma, Nano Res 13 (2020) 2106-2117. https://doi.org/10.1007/s12274-020-2817-6.

[68]

K. Zhang, Y. Zhou, C. Xiao, W. Zhao, H. Wu, J. Tang, X. Zhang, Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect, Sci. Adv. 5 (8) (2019) eaax6946. https://doi.org/10.1126/sciadv.aax6946.

[69]

S.N. Economidou, M.J. Uddin, M.J. Marques, D. Douroumis, W.T. Sow, H. Li, A. Podoleanu, A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery, Addit. Manuf. 38 (2021) 101815. https://doi.org/10.1016/j.addma.2020.101815.

[70]

A.L. Lima, I.P. Gross, L.L. de Sá-Barreto, T. Gratieri, G.M. Gelfuso, M. Cunha-Filho, Extrusion-based systems for topical and transdermal drug delivery, Expet Opin. Drug Deliv. 20 (7) (2023) 979-992. https://doi.org/10.1080/17425247.2023.2241362.

[71]

N. Elahpour, F. Pahlevanzadeh, M. Kharaziha, H.R. Bakhsheshi-Rad, S. Ramakrishna, F. Berto, 3D printed microneedles for transdermal drug delivery: a brief review of two decades, Int. J. Pharm. 597 (2021) 120301. https://doi.org/10.1016/j.ijpharm.2021.120301.

[72]

N. Elahpour, F. Pahlevanzadeh, M. Kharaziha, H.R. Bakhsheshi-Rad, S. Ramakrishna, F. Berto, 3D printed microneedles for transdermal drug delivery: a brief review of two decades, Int. J. Pharm. 597 (2021) 120301. https://doi.org/10.1016/j.ijpharm.2021.120301.

[73]

P. Katakam, B. Dey, F.H. Assaleh, N.T. Hwisa, S.K. Adiki, B.R. Chandu, A. Mitra, Top-down and bottom-up approaches in 3D printing technologies for drug delivery challenges, Crit. Rev. Ther. Drug Carrier Syst. 32 (1) (2015). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2014011157.

[74]

H.W. Cho, S.H. Baek, B.J. Lee, H.E. Jin, Orodispersible polymer films with the poorly water-soluble drug, olanzapine: hot-melt pneumatic extrusion for singleprocess 3D printing, Pharmaceutics 12 (8) (2020) 692. https://doi.org/10.3390/pharmaceutics12080692.

[75]

K.G. Lee, K.J. Park, S. Seok, S. Shin, J.Y. Park, Y.S. Heo, T.J. Lee, 3D printed modules for integrated microfluidic devices, RSC Adv 4 (62) (2014) 32876-32880. https://doi.org/10.1039/C4RA05072J.

[76]

J. Ji, C. Wang, Z. Xiong, Y. Pang, W. Sun, 3D-printed scaffold with halloysite nanotubes laden as a sequential drug delivery system regulates vascularized bone tissue healing, Mater. Today Adv. 15 (2022) 100259. https://doi.org/10.1016/j.mtadv.2022.100259.

[77]

J.H. Teoh, S.M. Tay, J. Fuh, C.H. Wang, Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing, J. Contr. Release 341 (2022) 80-94. https://doi.org/10.1016/j.jconrel.2021.11.017.

[78]

X. Chen, H. Chen, D. Wu, Q. Chen, Z. Zhou, R. Zhang, D. Sun, 3D printed microfluidic chip for multiple anticancer drug combinations, Sensor. Actuator. B Chem. 276 (2018) 507-516. https://doi.org/10.1016/j.snb.2018.08.121.

[79]

J. Johannesson, J. Khan, M. Hubert, A. Teleki, C.A. Bergström, 3D-printing of solid lipid tablets from emulsion gels, Int. J. Pharm. 597 (2021) 120304. https://doi.org/10.1016/j.ijpharm.2021.120304.

[80]

J. Norman, R.D. Madurawe, C.M. Moore, M.A. Khan, A. Khairuzzaman, A new chapter in pharmaceutical manufacturing: 3D-printed drug products, Adv. Drug Deliv. Rev. 108 (2017) 39-50. https://doi.org/10.1016/j.addr.2016.03.001.

[81]

A. Manero, P. Smith, A. Koontz, M. Dombrowski, J. Sparkman, D. Courbin, A. Chi, Leveraging 3D printing capacity in times of crisis: recommendations for COVID-19 distributed manufacturing for medical equipment rapid response, Int. J. Environ. Res. Publ. Health 17 (13) (2020) 4634. https://doi.org/10.3390/ijerph17134634.

[82]

H. Cai, Application of 3D printing in orthopedics: status quo and opportunities in China, Ann. Transl. Med. 3 (Suppl 1) (2015). https://doi.org/10.3978/j.issn.2305-5839.2015.01.38.

[83]

D. Moldenhauer, D.C.Y. Nguyen, L. Jescheck, F. Hack, D. Fischer, A. Schneeberger, 3D screen printing-An innovative technology for large-scale manufacturing of pharmaceutical dosage forms, Int. J. Pharm. 592 (2021) 120096. https://doi.org/10.1016/j.ijpharm.2020.120096.

[84]

D. Wang, J. Zhang, Q. Liu, B. Chen, Y. Liang, L. Hu, G. Jiang,3D printing challenges in enabling rapid response to public health emergencies, Innovation 1 (3) (2020). https://doi.org/10.1016/j.xinn.2020.100056.

[85]

K. Al-Litani, T. Ali, P.R. Martinez, A. Buanz, 3D printed implantable drug delivery devices for women’s health: formulation challenges and regulatory perspective, Adv. Drug Deliv. Rev. 114859 (2023). https://doi.org/10.1016/j.addr.2023.114859.

[86]

X. Chen, S. Wang, J. Wu, S. Duan, X. Wang, X. Hong, A. Zheng, The application and challenge of binder jet 3D printing technology in pharmaceutical manufacturing, Pharmaceutics 14 (12) (2022) 2589. https://doi.org/10.3390/pharmaceutics14122589.

[87]

M. Elbadawi, L.E. McCoubrey, F.K. Gavins, J.J. Ong, A. Goyanes, S. Gaisford, A.W. Basit, Harnessing artificial intelligence for the next generation of 3D printed medicines, Adv. Drug Deliv. Rev. 175 (2021) 113805. https://doi.org/10.1016/j.addr.2021.05.015.

[88]

C.Y. Liaw, M. Guvendiren,Current and emerging applications of 3D printing in medicine, Biofabrication 9 (2) (2017) 024102. https://doi.org/10.1088/1758-5090/aa7279.

[89]

Y. Li, Z. Lin, Y. Wang, S. Ju, H. Wu, H. Jin, B. Zhang, Unraveling the mystery of efficacy in Chinese medicine formula: new approaches and technologies for research on pharmacodynamic substances, Arab. J. Chem. 104302 (2022). https://doi.org/10.1016/j.arabjc.2022.104302.

[90]

Y. Zhang, T. Na, K. Zhang, Y. Yang, H. Xu, L. Wei, Y. Du, GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs, J. Tissue Eng. Regen. Med. 16 (10) (2022) 934-944. https://doi.org/10.1002/term.3341.

AI Summary AI Mindmap
PDF (5104KB)

271

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/