Protective effect of lycorine hydrochloride against diabetic nephropathy in high-fat diet and streptozotocin-induced diabetic mice

Kai-Li Fang , Xin-Yu Qi , Qing-Tong Han , Lu-Zhou Chen , Xiao-Ning Wang , Zhen-Peng Xu , Lu-Qing Shang , Tao Shen

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100035

PDF (4266KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100035 DOI: 10.1016/j.pscia.2024.100035
Research Article
research-article

Protective effect of lycorine hydrochloride against diabetic nephropathy in high-fat diet and streptozotocin-induced diabetic mice

Author information +
History +
PDF (4266KB)

Abstract

Diabetic nephropathy (DN) poses a significant risk to individuals with diabetes. Inflammation plays a crucial role in DN pathogenesis. Lycorine hydrochloride (LH) is derived from Lycoris radiata (L'Hér.). This herb has been identified as a potent anti-inflammatory molecule. Further studies indicated that LH displayed therapeutic potential against metabolic disorders, renal dysfunction, and fibrosis in a high-fat diet and streptozotocin-induced (HFD/STZ)-induced DN mouse model. Mechanistically, LH mitigated renal inflammation in DN mice by targeting NF-κB pathways and the NLRP3 inflammasome verified by in vivo study. In vitro, LH inhibited NLRP3 inflammasome activation induced by nigericin (Ng), monosodium urate (MSU), and ATP, reduced caspase-1 activation, and IL-1β release. Additionally, LH suppressed the NF-κB IS-induced activation, prevented nuclear translocation of NF-κB, and subsequently reduced the expression of downstream proteins COX2 and iNOS. Collectively, these results indicated that LH primarily improved hyperglycemia-induced renal function by reducing inflammation by targeting NF-κB and NLRP3 inflammasome, implying it is a promising therapeutic agent for DN.

Keywords

Diabetic nephropathy / Lycorine hydrochloride / NF-κB / NLRP3 inflammasome

Cite this article

Download citation ▾
Kai-Li Fang, Xin-Yu Qi, Qing-Tong Han, Lu-Zhou Chen, Xiao-Ning Wang, Zhen-Peng Xu, Lu-Qing Shang, Tao Shen. Protective effect of lycorine hydrochloride against diabetic nephropathy in high-fat diet and streptozotocin-induced diabetic mice. Pharmaceutical Science Advances, 2024, 2(1): 100035 DOI:10.1016/j.pscia.2024.100035

登录浏览全文

4963

注册一个新账户 忘记密码

Ethical approval of studies and informed consent

All animal experiments in the study were approved by the Laboratory Animal Ethical and Welfare Committee of Shandong University Cheeloo College of Medicine (Approval NO. 18026).

Funding information

This research was financially supported by the National Natural Science Foundation of China (Nos. 81874341 and 82274065); Toxicology of Traditional Chinese Medicines, a high-level priority subject in Chinese medicine in the National Administration of Traditional Chinese Medicine (zyyzdxk-2023296); and the Cutting Edge Development Fund of Advanced Medical Research Institute (GYY2023QY01).

Availability of data and material

The data generated or analyzed in this study have been included in a published article. These data will be available upon reasonable request.

CRediT authorship contribution statement

Kai-Li Fang: Investigation, Formal analysis, Visualization, Data curation. Xin-Yu Qi: Writing - original draft. Qing-Tong Han: Conceptualization, Methodology. Lu-Zhou Chen: Investigation, Data curation. Xiao-Ning Wang: Investigation, Project administration. Zhen-Peng Xu: Conceptualization, Methodology. Lu-Qing Shang: Investigation, Project administration. Tao Shen: Supervision, Funding acquisition, Writing - review & editing. All authors have read and approved the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2024.100035.

References

[1]

P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, R. Williams, I. D.F.D.A. Committee, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition, Diabetes Res. Clin. Pract. 157 (2019) 107843. https://doi.org/10.1016/j.diabres.2019.107843.

[2]

M.L. Caramori, A. Parks, M. Mauer, Renal lesions predict progression of diabetic nephropathy in type 1 diabetes, J. Am. Soc. Nephrol. 24 (7) (2013) 1175-1181. https://doi.org/10.1681/ASN.2012070739.

[3]

J.B. Cole, J.C. Florez, Genetics of diabetes mellitus and diabetes complications, Nat. Rev. Nephrol. 16 (7) (2020) 377-390. https://doi.org/10.1038/s41581-020-0278-5.

[4]

R.C. Slieker, A.A.W.A. van der Heijden, M.K. Siddiqui, M. Langendoen-Gort, G. Nijpels, R. Herings, T.L. Feenstra, K.G.M. Moons, S. Bell, P.J. Elders, L.M. Hart, J.W.J. Beulens, Performance of prediction models for nephropathy in people with type 2 diabetes: systematic review and external validation study, BMJ (374) (2021) n2134. https://doi.org/10.1136/bmj.n2134.

[5]

Q. Huang, Y. Zhang, Y. Jiang, L. Huang, Q. Liu, D. Ouyang, Eucommia lignans alleviate the progression of diabetic nephropathy through mediating the AR/Nrf2/ HO-1/AMPK axis in vivo and in vitro, Chin. J. Nat. Med. 21 (7) (2023) 516-526. https://doi.org/10.1016/S1875-5364(23)60427-3.

[6]

M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature 414 (6865) (2001) 813-820. https://doi.org/10.1038/414813a.

[7]

H.B. Lee, M.R. Yu, Y. Yang, Z. Jiang, H. Ha, Reactive oxygen species-regulated signaling pathways in diabetic nephropathy, J. Am. Soc. Nephrol. 14 (8 Suppl 3) (2003) S241-S245. https://doi.org/10.1097/01.asn.0000077410.66390.0f.

[8]

C.M.O. Volpe, P.H. Villar-Delfino, P.M.F. Dos Anjos, J.A. Nogueira-Machado, Cellular death, reactive oxygen species (ROS) and diabetic complications, Cell Death Dis. 9 (2) (2018) 119. https://doi.org/10.1038/s41419-017-0135-z.

[9]

Y. Zhu, C. Zhu, H. Yang, J. Deng, D. Fan, Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice, Pharmacol. Res. 155 (2020) 104746. https://doi.org/10.1016/j.phrs.2020.104746.

[10]

Y. Han, X. Xu, C. Tang, P. Gao, X. Chen, X. Xiong, M. Yang, S. Yang, X. Zhu, S. Yuan, F. Liu, L. Xiao, Y.S. Kanwar, L. Sun, Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis, Redox Biol. 16 (2018) 32-46. https://doi.org/10.1016/j.redox.2018.02.013.

[11]

O. Arrigoni, R.A. Liso, G. Calabrese, Lycorine as an inhibitor of ascorbic-acid biosynthesis, Nature 256 (5517) (1975) 513-514. https://doi.org/10.1038/256513a0.

[12]

M. Roy, L. Liang, X. Xiao, P. Feng, M. Ye, J. Liu, Lycorine: a prospective natural lead for anticancer drug discovery, Biomed. Pharmacother. 107 (2018) 615-624. https://doi.org/10.1016/j.biopha.2018.07.147.

[13]

J. Wang, J. Xu, G. Xing, Lycorine inhibits the growth and metastasis of breast cancer through the blockage of STAT3 signaling pathway, Acta Biochim. Biophys. Sin. 49 (9) (2017) 771-779. https://doi.org/10.1093/abbs/gmx076.

[14]

H. Shang, X. Jang, L. Shi, Y. Ma, Lycorine inhibits cell proliferation and induced oxidative stress-mediated apoptosis via regulation of the JAK/STAT3 signaling pathway in HT-3 cells, J. Biochem. Mol. Toxicol. 35 (10) (2021) e22882. https://doi.org/10.1002/jbt.22882.

[15]

C. Wang, Q. Wang, X. Li, Z. Jin, P. Xu, N. Xu, A. Xu, Y. Xu, S. Zheng, J. Zheng, C. Liu, P. Huang, Lycorine induces apoptosis of bladder cancer T24 cells by inhibiting phospho-Akt and activating the intrinsic apoptotic cascade, Biochem. Biophys. Res. Commun. 483 (1) (2017) 197-202. https://doi.org/10.1016/j.bbrc.2016.12.168.

[16]

H. Yu, Y. Qiu, X. Pang, J. Li, S. Wu, S. Yin, L. Han, Y. Zhang, C. Jin, X. Gao, W. Hu, T. Wang, Lycorine promotes autophagy and apoptosis via TCRP1/Akt/mTOR Axis inactivation in human hepatocellular carcinoma, Mol. Cancer Therapeut. 16 (12) (2017) 2711-2723. https://doi.org/10.1158/1535-7163.MCT-17-0498.

[17]

M. Hu, Z. Yu, P. Mei, J. Li, D. Luo, H. Zhang, M. Zhou, F. Liang, R. Chen, Correction for: lycorine induces autophagy-associated apoptosis by targeting MEK2 and enhances vemurafenib activity in colorectal cancer, Aging (Albany NY) 12 (7) (2020) 6488-6489. https://doi.org/10.18632/aging.103011.

[18]

Q. Liang, W. Cai, Y. Zhao, H. Xu, H. Tang, D. Chen, F. Qian, L. Sun, Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis, Pharmacol. Res. 158 (2020) 104884. https://doi.org/10.1016/j.phrs.2020.104884.

[19]

J. Kang, Y. Zhang, X. Cao, J. Fan, G. Li, Q. Wang, Y. Diao, Z. Zhao, L. Luo, Z. Yin, Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge, Int. Immunopharm. 12 (1) (2012) 249-256. https://doi.org/10.1016/j.intimp.2011.11.018.

[20]

Z.G. Zheng, S.T. Zhu, H.M. Cheng, X. Zhang, G. Cheng, P.M. Thu, S.P. Wang, H.J. Li, M. Ding, L. Qiang, X.W. Chen, Q. Zhong, P. Li, X. Xu, Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway, Autophagy 17 (7) (2021) 1592-1613. https://doi.org/10.1080/15548627.2020.1757955.

[21]

Q. Yuan, X. Zhang, W. Wei, J. Zhao, Y. Wu, S. Zhao, L. Zhu, P. Wang, J. Hao, Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy, Pharmacol. Res. 175 (2022) 105985. https://doi.org/10.1016/j.phrs.2021.105985.

[22]

C. Wanner, S.E. Inzucchi, J.M. Lachin, D. Fitchett, M. von Eynatten, M. Mattheus, O.E. Johansen, H.J. Woerle, U.C. Broedl, B. Zinman, Empagliflozin and progression of kidney disease in type 2 diabetes, N. Engl. J. Med. 375 (4) (2016) 323-334. https://doi.org/10.1056/NEJMoa1515920.

[23]

R.A. DeFronzo, W.B. Reeves, A.S. Awad, Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors, Nat. Rev. Nephrol. 17 (5) (2021) 319-334. https://doi.org/10.1038/s41581-021-00393-8.

[24]

A. Khine, J. Kwok, E. Lin, Time to invest in the future: assessing the costeffectiveness of Empagliflozin in diabetic kidney disease, Am. J. Kidney Dis. 79 (6) (2022) 780-782. https://doi.org/10.1053/j.ajkd.2021.11.003.

[25]

A. Cuadrado, G. Manda, A. Hassan, M.J. Alcaraz, C. Barbas, A. Daiber, P. Ghezzi, R. Leon, M.G. Lopez, B. Oliva, M. Pajares, A.I. Rojo, N. Robledinos-Anton, A.M. Valverde, E. Guney, H. Schmidt, Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach, Pharmacol. Rev. 70 (2) (2018) 348-383. https://doi.org/10.1124/pr.117.014753.

[26]

A. Akbal, A. Dernst, M. Lovotti, M.S.J. Mangan, R.M. McManus, E. Latz, How location and cellular signaling combine to activate the NLRP3 inflammasome, Cell. Mol. Immunol. 19 (11) (2022) 1201-1214. https://doi.org/10.1038/s41423-022-00922-w.

[27]

J. Fu, H. Wu, Structural mechanisms of NLRP3 inflammasome assembly and activation, Annu. Rev. Immunol. 41 (2023) 301-316. https://doi.org/10.1146/annurev-immunol-081022-021207.

[28]

F. Martinon, V. Petrilli, A. Mayor, A. Tardivel, J. Tschopp, Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature 440 (7081) (2006) 237-241. https://doi.org/10.1038/nature04516.

[29]

T.H. Cheng, M.C. Ma, M.T. Liao, C.M. Zheng, K.C. Lu, C.H. Liao, Y.C. Hou, W.C. Liu, C.L. Lu, Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease, Toxins 12 (11) (2020). https://doi.org/10.3390/toxins12110684.

[30]

H.L. Caslin, J.J.A. McLeod, A.J. Spence, A.A. Qayum, E.M. Kolawole, M.T. Taruselli, A. Paranjape, H.L. Elford, J.J. Ryan, Didox (3,4-dihydroxybenzohydroxamic acid) suppresses IL-33-induced cytokine production in primary mouse mast cells, Cell. Immunol. 319 (2017) 10-16. https://doi.org/10.1016/j.cellimm.2017.04.013.

[31]

T.M. Matsebatlela, A.L. Anderson, V.S. Gallicchio, H. Elford, C.D. Rice, 3,4- Dihydroxy-benzohydroxamic acid (Didox) suppresses pro-inflammatory profiles and oxidative stress in TLR4-activated RAW264.7 murine macrophages, Chem. Biol. Interact. 233 (2015) 95-105. https://doi.org/10.1016/j.cbi.2015.03.027.

[32]

Z. Cao, P. Yang, Q. Zhou, Multiple biological functions and pharmacological effects of lycorine, Sci. China Chem. 56 (10) (2013) 1382-1391. https://doi.org/10.1007/s11426-013-4967-9.

[33]

H. Xiao, X. Xu, L. Du, X. Li, H. Zhao, Z. Wang, L. Zhao, Z. Yang, S. Zhang, Y. Yang, C. Wang, Lycorine and organ protection: review of its potential effects and molecular mechanisms, Phytomedicine 104 (2022) 154266. https://doi.org/10.1016/j.phymed.2022.154266.

[34]

Q. Liang, W. Cai, Y. Zhao, H. Xu, H. Tang, D. Chen, F. Qian, L. Sun, Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis, Pharmacol. Res. 158 (2020). https://doi.o rg/10.1016/j.phrs.2020.104884.

[35]

J.C. Leemans, L. Kors, H.J. Anders, S. Florquin, Pattern recognition receptors and the inflammasome in kidney disease, Nat. Rev. Nephrol. 10 (7) (2014) 398-414. https://doi.org/10.1038/nrneph.2014.91.

[36]

Q. Wang, Y. Ou, G. Hu, C. Wen, S. Yue, C. Chen, L. Xu, J. Xie, H. Dai, H. Xiao, Y. Zhang, R. Qi, Naringenin attenuates non-alcoholic fatty liver disease by downregulating the NLRP3/NF-kappaB pathway in mice, Br. J. Pharmacol. 177 (8) (2020) 1806-1821. https://doi.org/10.1111/bph.14938.

[37]

L. Bai, J. Li, H. Li, J. Song, Y. Zhou, R. Lu, B. Liu, Y. Pang, P. Zhang, J. Chen, X. Liu, J. Wu, C. Liang, J. Zhou, Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NFkappaB signaling and NLRP3 inflammasome activation by exosomes in rats, Biochem. Pharmacol. 169 (2019) 113619. https://doi.org/10.1016/j.bcp.2019.08.021.

[38]

A. Chang, K. Ko, M.R. Clark, The emerging role of the inflammasome in kidney diseases, Curr. Opin. Nephrol. Hypertens. 23 (3) (2014) 204-210. https://doi.org/10.1097/01.mnh.0000444814.49755.90.

[39]

S.-M. Yang, S.-M. Ka, H.-L. Wu, Y.-C. Yeh, C.-H. Kuo, K.-F. Hua, G.-Y. Shi, Y.-Y.- J. Hung, F.-C. Hsiao, S.-S. Yang, Y.-S. Shieh, S.-H. Lin, C.-W. Wei, J.-S. Lee, C.-C.- Y. Yang, A. Chen, Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis, Diabetologia 57 (2) (2013) 424-434. https://doi.org/10.1007/s00125-013-3115-6.

[40]

Q. Li, K. Zhang, L. Hou, J. Liao, H. Zhang, Q. Han, J. Guo, Y. Li, L. Hu, J. Pan, W. Yu, Z. Tang, Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/ NLRP3 pathway in diabetic nephropathy, Life Sci. 322 (2023). https://doi. org/10.1016/j.lfs.2023.121656.

[41]

H. Yi, R. Peng, L.-y. Zhang, Y. Sun, H.-m. Peng, H.-d. Liu, L.-j. Yu, A.-l. Li, Y.-Y.- j. Zhang, W.-h. Jiang, Z. Zhang, LincRNA-Gm4419 knockdown ameliorates NF-κB/ NLRP3 inflammasome-mediated inflammation in diabetic nephropathy, Cell Death Dis. 8 (2) (2017) e2583-e2583, https://doi.org/10.1038/cddis.2016.451.

[42]

G. Tang, S. Li, C. Zhang, H. Chen, N. Wang, Y. Feng, Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management, Acta Pharm. Sin. B 11 (9) (2021) 2749-2767. https://doi.org/10.1016/j.apsb.2020.12.020.

[43]

M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, T. Y, Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells, Kidney Int. 63 (2003) 1671-1680. https://doi.org/10.1046/j.1523-1755.2003.00906.x.

[44]

J.S. Park, H.I. Choi, E.H. Bae, S.K. Ma, S.W. Kim, Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-kB activation in HK-2 cells, Kor. J. Intern. Med. 34 (1) (2019) 146-155. https://doi.org/10.3904/kjim.2016.298.

[45]

D.K. Singh, P. Winocour, K. Farrington, Oxidative stress in early diabetic nephropathy: fueling the fire, Nat. Rev. Endocrinol. 7 (3) (2010) 176-184. https://doi.org/10.1038/nrendo.2010.212.

[46]

S. Kretzing, G. Abraham, B. Seiwert, F.R. Ungemach, U. Krugel, R. Regenthal, Dosedependent emetic effects of the Amaryllidaceous alkaloid lycorine in beagle dogs, Toxicon 57 (1) (2011) 117-124. https://doi.org/10.1016/j.toxicon.2010.10.012.

AI Summary AI Mindmap
PDF (4266KB)

325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/