Antimicrobial peptides: A novel and promising arsenal against methicillin-resistant Staphylococcus aureus (MRSA) infections

Tope T. Odunitan , Adegboye O. Oyaronbi , Fakuade A. Adebayo , Paul A. Adekoyeni , Boluwatife T. Apanisile , Tolu D. Oladunni , Oluwatosin A. Saibu

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100034

PDF (1248KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100034 DOI: 10.1016/j.pscia.2023.100034
Review Article
research-article

Antimicrobial peptides: A novel and promising arsenal against methicillin-resistant Staphylococcus aureus (MRSA) infections

Author information +
History +
PDF (1248KB)

Abstract

Despite years of research, technological advancements, and the widespread use of vaccines and antibiotics as tools to combat microbial threats to humans, methicillin-resistant Staphylococcus aureus (MRSA) infections remain a serious threat to global healthcare systems. The challenge of MRSA is a result of the bacteria's remarkably rapid evolution and adaptation, building up a collection of resistance genes that defeat the mechanism of traditional antibiotics. Conventional antibiotics, including the most notable beta-lactam antibiotics, such as penicillin and cephalosporin, are increasingly inadequate against the rapid adaptability and resistance of MRSA. Consequently, the scientific community's therapeutic arsenal for battling MRSA infections is becoming increasingly limited, necessitating innovative interventions. Antimicrobial peptides (AMPs), with their precise targeting mechanisms and innate modifiability, have emerged as promising therapeutic agents. By selectively interrupting bacterial processes and boosting innate immunological responses, AMPs offer a multifaceted strategy. Modern biotechnological and bioinformatics advancements have enabled the refinement of AMPs for improved efficacy. This comprehensive review delves into the intricate facets of MRSA pathogenicity, determinants of resistance, foundational tenets of peptide-based therapeutics, and recent scientific breakthroughs. A comprehensive analysis of the current research landscape, clinical implications, and persistent challenges underscores the potential of precisely tailored peptides as formidable weapons for counteracting the enduring threat of MRSA infections.

Keywords

Antimicrobial peptide / Microbial resistance / Antibiotics / Pathogenicity / Therapeutic potential / Amphipathicity

Cite this article

Download citation ▾
Tope T. Odunitan, Adegboye O. Oyaronbi, Fakuade A. Adebayo, Paul A. Adekoyeni, Boluwatife T. Apanisile, Tolu D. Oladunni, Oluwatosin A. Saibu. Antimicrobial peptides: A novel and promising arsenal against methicillin-resistant Staphylococcus aureus (MRSA) infections. Pharmaceutical Science Advances, 2024, 2(1): 100034 DOI:10.1016/j.pscia.2023.100034

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

Conceptualization: Tope T. Odunitan and Boluwatife T. Apanisile; Manuscript draft: Tope T. Odunitan, Boluwatife T. Apanisile, Paul A. Adekoyemi, Fakuade A. Adebayo, Paul A. Adekoyemi, Tolu D. Oladunni, and Oluwatosin A. Saibu; Illustration and figures: Tope Odunitan and Oluwatosin Saibu; Proofreading: Tope T. Odunitan and Oluwatosin A. Saibu. All the authors agree with the final submission of the manuscript.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

Not applicable.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We express our sincere gratitude to Oluwasesan Oduntan, Olaitan Oduntan, and Dr. T. I. Adelusi for their valuable contributions and support throughout this study.

References

[1]

F.D. Lowy, Staphylococcus aureus infections, N. Engl. J. Med. 339 (8) (1998) 520-532. https://doi.org/10.1056/nejm199808203390806.

[2]

F.A. Waldvogel, Staphylococcus aureus. In: G.L. Mandell, R.G. Douglas & J.E. Bennett (ed.), Principles and Practices of Infectious Disease, third ed. Churchill Livingstone, Philadelphia, Pennsylvania, USA, 121(8) 1754-1777..

[3]

D.M.P. De Oliveira, B.M. Forde, T.J. Kidd, P.N.A. Harris, M.A. Schembri, S.A. Beatson, D.L. Paterson, M.J. Walker, Antimicrobial resistance in ESKAPE pathogens, Clin. Microbiol. Rev. 33 (3) (2020). https://doi.org/10.1128/cmr.00181-19.

[4]

C.J. Murray, K.S. Iku ta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, et al., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, Lancet 399 (10325) (2022) 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0.

[5]

Hryniewicz, Epidemiology of MRSA, Infection 27 (Suppl 2) (1999) S13-S16, https://doi.org/10.1007/BF02561663.

[6]

A. Mlynarczyk, B. Mlynarczyk, M. Kmera-Muszynska, S. Majewski, G. Mlynarczyk,Mechanisms of the resistance and tolerance to beta-lactam and glycopeptide antibiotics in pathogenic gram-positive cocci, Mini Rev. Med. Chem. 9 (13) (2009) 1527-1537. https://doi.org/10.2174/138955709790361557.

[7]

Y.B. Huang, J. Huang, Y. Chen, Alpha-helical cationic antimicrobial peptides: relationships of structure and function, Protein Cell 1 (2010) 143-152. https://doi.org/10.1007/s13238-010-0004-3.

[8]

J. Lei, L. Sun, S. Huang, C. Zhu, P. Li, J. He, V. Mackey, D.H. Coy, Q. He, The antimicrobial peptides and their potential clinical applications, Am. J. Transl. Res. 11 (7) (2019) 3919-3931.

[9]

S. Mallapragada, A. Wadhwa, P. Agrawal, Antimicrobial peptides: the miraculous biological molecules, J. Indian Soc. Periodontol. 21 (6) (2017) 434-438. https://doi.org/10.4103/jisp.jisp_325_16.

[10]

T. Florin, C. Maracci, M. Graf, P. Karki, D. Klepacki, An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome, Nat. Struct. Mol. Biol. 24 (9) (2017) 752-757. https://doi.org/10.1038/nsmb.3439.

[11]

J. Xuan, W. Feng, J. Wang, R. Wang, B. Zhang, L. Bo, Z.S. Chen, H. Yang, L. Sun, Antimicrobial peptides for combating drug-resistant bacterial infections, Drug Resist. Updates 68 (2023) 100954. https://doi.org/10.1016/j.drup.2023.100954.

[12]

J. Lei, L. Sun, S. Huang, C. Zhu, P. Li, J. He, et al., The antimicrobial peptides and their potential clinical applications, Am. J. Transl. Res. 11 (7) (2019) 3919-3931.

[13]

H. Jenssen, P. Hamill, R.E. Hancock, Peptide antimicrobial agents, Clin. Microbiol. Rev. 19 (3) (2006) 491-511. https://doi.org/10.1128/cmr.00056-05.

[14]

L. Zhang, R.L. Gallo,Antimicrobial peptides, Curr. Biol. 26 (1) (2016) 14-19. https://doi.org/10.1016/j.cub.2015.11.017.

[15]

M. Pasupuleti, A. Schmidtchen, M. Malmsten, Antimicrobial peptides: key components of the innate immune system, Crit. Rev. Biotechnol. 32 (2) (2012) 143-171. https://doi.org/10.3109/07388551.2011.594423.

[16]

E.F. Haney, S.C. Mansour, R.E. Hancock, Antimicrobial peptides: an introduction, Methods Mol. Biol. 1548 (2017) 3-22. https://doi.org/10.1007/978-1-4939-6737-7_1.

[17]

J.K. Boparai, P.K. Sharma, Mini review on antimicrobial peptide, sources, mechanism and recent applications, Protein Pept. Lett. 27 (1) (2020) 4-16. https://doi.org/10.2174/0929866526666190822165812.

[18]

S.R. Dennison, F. Harris, M. Mura, D.A. Phoenix, An atlas of anionic antimicrobial peptides from amphibians, Curr. Protein Pept. Sci. 19 (8) (2018) 823-838. https://doi.org/10.2174/1389203719666180226155035.

[19]

V. Teixeira, M.J. Feio, M. Bastos, Role of lipids in the interaction of antimicrobial peptides with membranes, Prog. Lipid Res. 51 (2) (2012) 149-177. https://doi.org/10.1016/j.plipres.2011.12.005.

[20]

R. Gennaro, M. Zanetti, Structural features and biological activities of the cathelicidin-derived antimicrobial peptides, Biopolymers 55 (1) (2000) 31-49. https://doi.org/10.1002/1097-0282(2000)55:1%3C31::AID-BIP40%3E3.0.CO;2-9.

[21]

F. Harris, S.R. Dennison, D.A. Phoenix, Anionic antimicrobial peptides from eukaryotic organisms, Curr. Protein Pept. Sci. 10 (6) (2009) 585-606. https://doi.org/10.2174/138920309789630589.

[22]

J. Lakshmaiah Narayana, J.-Y. Chen, Antimicrobial peptides: possible antiinfective agents, Peptides 72 (2015) 88-94. https://doi.org/10.1016/j.peptides.2015.05.012.

[23]

M. Jeźowska-Bojczuk, K. Stokowa-Sołtys, Peptides having antimicrobial activity and their complexes with transition metal ions, Eur. J. Med. Chem. 143 (2018) 997-1009. https://doi.org/10.1016/j.ejmech.2017.11.086.

[24]

A. Tasiemski, F. Vandenbulke, G. Mitta, J. Lemoine, C. Lefebvre, P.E. Sautiere, M. Salzet, Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum, J. Biol. Chem. 279 (30) (2004) 30973-30982. https://doi.org/10.1074/jbc.M312156200.

[25]

L. Jiang, B. Wang, B. Li, C. Wang, Y. Luo, Preparation and identification of peptides and their zinc complexes with antimicrobial activities from silver carp (Hypophthalmichthys molitrix) protein hydrolysates, Food Res. Int. 64 (2014) 91-98. https://doi.org/10.1016/j.foodres.2014.06.008.

[26]

R. Rathinakumar, W.C. Wimley, High-throughput discovery of broad-spectrum peptide antibiotics, Faseb. J. 24 (9) (2010) 3232-3238. https://doi.org/10.1096/Ffj.10-157040.

[27]

A.A. Bahar, D. Ren, Antimicrobial peptides, Pharmaceuticals 6 (12) (2013) 1543-1575. https://doi.org/10.3390/ph6121543.

[28]

Y. Chen, M.T. Guarnieri, A.I. Vasil, M.L. Vasil, C.T. Mant, R.S. Hodges, Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides, Antimicrob, Agents Chemother 51 (4) (2007) 1398-1406. https://doi.org/10.1128/aac.00925-06.

[29]

A. Som, S. Vemparala, I. Ivanov, G.N. Tew, Synthetic mimics of antimicrobial peptides, Peptide Sci 90 (2008) 83-93. https://doi.org/10.1002/bip.20970.

[30]

T. Passioura, T. Katoh, Y. Goto, H. Suga, Selection-based discovery of druglike macrocyclic peptides, Annu. Rev. Biochem. 83 (2014) 727-752. https://doi.org/10.1146/annurev-biochem-060713-035456.

[31]

J. Vagner, H. Qu, V.J. Hruby, Peptidomimetics, a synthetic tool of drug discovery, Curr. Opin. Chem. Biol. 12 (3) (2008) 292-296. https://doi.org/10.1016/j.cbpa.2008.03.009.

[32]

P.S.X. Yap, B.C. Yiap, H.C. Ping, S.H.E. Lim, Essential oils, a new horizon in combating bacterial antibiotic resistance, Open Microbiol. J. 8 (2014) 6, https://doi.org/10.2174/1874285801408010006.

[33]

N. Malanovic, L. Marx, S.E. Blondelle, G. Pabst, E.F. Semeraro, Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action, Biochim. Biophys. Acta, Biomembr. 1862 (8) (2020) 183275, https://doi.org/10.1016/j.bbamem.2020.183275.

[34]

R. Santos, D. Ruza, E. Cunha, L. Tavares, M. Oliveira, Diabetic foot infections: application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms, PLoS One 14 (7) (2019) e0220000, https://doi.org/10.1371/journal.pone.0220000.

[35]

D.A. Williamson, G.P. Carter, B.P. Howden, Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns, Clin. Microbiol. Rev. 30 (3) (2017) 827-860. https://doi.org/10.1128/cmr.00112-16.

[36]

C.D. Fjell, J.A. Hiss, R.E. Hancock, G. Schneider, Designing antimicrobial peptides: form follows function, Nat. Rev. Drug Discov. 11 (1) (2012) 37-51. https://doi.org/10.1038/nrd3591.

[37]

J.F. Shurko, R.S. Galega, C. Li, G.C. Lee, Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus, J. Antibiot. 71 (11) (2018) 971-974. https://doi.org/10.1038/s41429-018-0090-7.

[38]

R.K. Thapa, D.B. Diep, H.H. Tønnesen, Topical antimicrobial peptide formulations for wound healing: current developments and future prospects, Acta Biomater 103 (2020) 52-67. https://doi.org/10.1016/j.actbio.2019.12.025.

[39]

A. Hakur, A. Sharma, H.K. Alajangi, P.K. Jaiswal, Y.B. Lim, G. Singh, R.P. Barnwal, In pursuit of next-generation therapeutics: antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications, Int. J. Biol. Macromol. 218 (2022). https://doi.org/10.1016/j.ijbiomac.2022.07.103.

[40]

K.E. Ridyard, J. Overhage, The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent, Antibiotics 10 (6) (2021) 650, https://doi.or g/10.3390/antibiotics10060650.

[41]

J. Kluytmans, A. van Belkum, H. Verbrugh, Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks, Clin. Microbiol. Rev. 10 (3) (1997) 505-520. https://doi.org/10.1128/cmr.10.3.505.

[42]

B.L. Sim, E. McBryde, A.C. Street, C. Marshall, Multiple site surveillance cultures as a predictor of methicillin-resistant Staphylococcus aureus infections, Infect. Control Hosp. Epidemiol. 34 (8) (2013) 818-824. https://doi.org/10.1086/671273.

[43]

D.J. Diekema, M.A. Pfaller, F.J. Schmitz, J. Smayevsky, J. Bell, R.N. Jones, M. Beach,Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program,1997-1999, Clin. Infect. Dis. 32 (Suppl. 2) (2001) S114-S132, https://doi.org/10.1086/320184.

[44]

M.C. Enright, N.P. Day, C.E. Davies, S.J. Peacock, B.G. Spratt, Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus, J. Clin. Microbiol. 38 (3) (2000) 1008-1015. https://doi.org/10.1128/jcm.38.3.1008-1015.2000.

[45]

M. Emonts, et al., Host polymorphisms in interleukin 4, complement factor H, and C-reactive protein associated with nasal carriage of Staphylococcus aureus and occurrence of boils, J. Infect. Dis. 197 (9) (2008) 1244-1253, https://doi.org/10.1086/533501.

[46]

C. Weidenmaie, J.F. Kokai-Kun, E. Kulauzovic, T. Kohler, G. Thumm, H. Stoll, F. Göt, A. Peschel, Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization, Int. J. Med. Microbiol. 298 (5-6) (2008) 505-513, https://doi.org/10.1016/j.ijmm.2007.11.006.

[47]

H.F. Wertheim, E. Walsh, R. Choudhurry, D.C. Melles, H.A.M. Boelens, H. Miajlovic, H.A. Verbrugh, T. Foster, A. van Belkum, Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans, PLoS Med. 5 (1) (2008) e17, https://doi.org/10.1371/journal.pmed.0050017.

[48]

L.M. O’Brien, E.J. Walsh, R.C. Massey, S.J. Peacock, T.J. Foster, Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization, Cell Microbiol 4 (11) (2002) 759-770. https://doi.org/10.1046/j.1462-5822.2002.00231.x.

[49]

S. Boyle-Vavra, X. Li, T. Alam, T.D. Read, J. Sieth, C. Cywes-Bentley, G. Dobbins, USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus, mBio 6 (2) (2015) e02585-14, https://doi.org/10.1128/mbio.02585-14.

[50]

A.N. Spaan, J.A.G. van Strijp, V.J. Torres, Leukocidins: staphylococcal bicomponent pore-forming toxins find their receptors, Nat. Rev. Microbiol. 15 (7) (2017) 435-447. https://doi.org/10.1038/nrmicro.2017.27.

[51]

J.A. Kluytmans, J.W. Mouton, E.P.F. Ijzerman, C.M.J.E. Vandenbroucke-Grauls, A.W.P.M. Maat, J.H.T. Wagenvoort, H.A. Verbrugh, Nasal carriage of Staphylococcus aureus as a major risk factor for wound infections after cardiac surgery, J. Infect. Dis. 171 (1) (1995) 216-219. https://doi.org/10.1093/infdis/171.1.216.

[52]

C. von Eiff, K. Becker, K. Machka, H. Stammer, G. Peters, Nasal carriage as a source of Staphylococcus aureus bacteremia, N. Engl. J. Med. 344 (1) (2001) 11-16. https://doi.org/10.1056/NEJM200101043440102.

[53]

T.J. Foster, J.A. Geoghegan, V.K. Ganesh, M. Hook, Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus, Nat. Rev. Microbiol. 12 (1) (2014) 49-62. https://doi.org/10.1038/nrmicro3161.

[54]

A.G. Cheng, A.C. DeDent, O. Schneewind, D. Missiakas, A play in four acts: Staphylococcus aureus abscess formation, Trends Microbiol 19 (5) (2011) 225-232. https://doi.org/10.1016/j.tim.2011.01.007.

[55]

A. Laarman, F. Milder, J. van Strijp, S. Rooijakkers, Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications, J. Mol. Med. 88 (2010) 115-120. https://doi.org/10.1007/s00109-009-0572-y.

[56]

K.Y. Le, M. Otto, Quorum-sensing regulation in staphylococci-an overview, Front. Microbiol. 6 (2015) 1174, https://doi.org/10.3389/fmicb.2015.01174.

[57]

G.Y. Cheung, R. Wang, B.A. Khan, D.E. Sturdevant, M. Otto, Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis, Infect. Immun. 79 (5) (2011) 1927-1935. https://doi.org/10.1128/iai.00046-11.

[58]

M.I. Crisostomo, H. Westh, A. Tomasz, M. Chung, D.C. Oliveira, H. de Lencastre, The evolution of methicillin resistance in Staphylococcus aureus:similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones, Proc. Natl. Acad. Sci. U.S.A. 98 (17) (2001) 9865-9870. https://doi.org/10.1073/pnas.161272898.

[59]

International Working Group, on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC), Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements, Antimicrob. Agents Chemother. 53 (12) (2009) 4961-4967. https://doi.org/10.1128/AAC.00579-09.

[60]

A.M. Bal, G.W. Coombs, M.T.G. Holden, J.A. Lindsay, G.R. Nimmo, P. Tattevin, R.L. Skov, Genomic insights into the emergence and spread of international clones of healthcare-, community- and livestock-associated meticillin-resistant Staphylococcus aureus: blurring of the traditional definitions, J. Glob. Antimicrob. Resist 6 (2016) 95-101. https://doi.org/10.1016/j.jgar.2016.04.004.

[61]

B.J. Hartman, A. Tomasz, Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus, J. Bacteriol. 158 (2) (1984) 513-516. https://doi.org/10.1128/jb.158.2.513-516.1984.

[62]

L. Garcia-Alvarez, et al., Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study, Lancet Infect. Dis. 11 (8) (2011) 595-603, https://doi.org/10.1016/S1473-3099(11)70126-8.

[63]

K. Becker, S. van Alen, E.A. Idelevich, N. Schleimer, J. Seggewiß, A. Mellmann, U. Kaspar, G. Peters, Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus, Emerg. Infect. Dis. 24 (2) (2018) 242-248. https://doi.org/10.3201/eid2402.171074.

[64]

S. Gardete, A. Tomasz, Mechanisms of vancomycin resistance in Staphylococcus aureus, J. Clin. Invest. 124 (7) (2014) 2836-2840. https://doi.org/10.1172/JCI68834.

[65]

R.E.W. Hancock, H.-G. Sahl, Antimicrobial and host-defense peptides as new antiinfective therapeutic strategies, Nat. Biotechnol. 24 (12) (2006) 1551-1557. https://doi.org/10.1038/nbt1267.

[66]

A. Peschel, H.-G. Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance, Nat. Rev. Microbiol. 4 (7) (2006) 529-536. https://doi.org/10.1038/nrmicro1441.

[67]

L.T. Nguyen, E.F. Haney, H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action, Trends Biotechnol 29 (9) (2011) 464-472. https://doi.org/10.1016/j.tibtech.2011.05.001.

[68]

H. Jenssen, P. Hamill, R.E. Hancock, Peptide antimicrobial agents, Clin. Microbiol. Rev. 19 (3) (2006) 491-511. https://doi.org/10.1128/cmr.00056-05.

[69]

M. Endo, K. Takesako, I. Kato, H. Yamaguchi, Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae, Antimicrob. Agents Chemother. 41 (3) (1997) 672-676. https://doi.org/10.1128/aac.41.3.672.

[70]

J.D. Hale, R.E. Hancock, Alternative mechanisms of action of cationic antimicrobial peptides on bacteria, Expert Rev. Anti InfectTher. 5 (6) (2007) 951-959. https://doi.org/10.1586/14787210.5.6.951.

[71]

J. Czub, M. Baginski, Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol, Biophys. J. 90 (7) (2006) 2368-2382. https://doi.org/10.1529/biophysj.105.072801.

[72]

S.M. Levitz, M.E. Selsted, T. Ganz, R.I. Lehrer, R.D. Diamond, In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages, J. Infect. Dis. 154 (3) (1986) 483-489. https://doi.org/10.1093/infdis/154.3.483.

[73]

N.L. van der Weerden, R.E. Hancock, M.A. Anderson, Permeabilization of fungal hyphae by the plant defensinNaD1 occurs through a cell wall-dependent process, J. Biol. Chem. 285 (48) (2010) 37513-37520. https://doi.org/10.1074/jbc.M110.134882.

[74]

F.B. Cavassin, Sixty years of amphotericin B : an overview of the main antifungal agent used to treat invasive fungal infections, Infect. Dis. Ther. 10 (2021) 115-147. https://doi.org/10.1007/s40121-020-00382-7.

[75]

G.B. De Cesare, S.A. Cristy, D.A. Garsin, M.C. Lorenz, Antimicrobial peptides: a new frontier in antifungal therapy, mBio 11 (6) (2020) 1-21. https://doi.org/10.1128/mBio.02123-20.

[76]

D.K. Mercer, D.A.O. Neil, Innate inspiration: antifungal peptides and other iImmunotherapeutics from the host immune response, Front. Immunol. 11 (2020) 1-28. https://doi.org/10.3389/fimmu.2020.02177.

[77]

M. Yasir, M.D.P. Willcox, D. Dutta, Action of antimicrobial peptides against bacterial biofilms, Materials 11 (12) (2018) 2468. https://doi.org/10.3390/ma11122468.

[78]

M. Martinez, S. Gonçalves, M.R. Felício, P. Maturana, N.C. Santos, L. Semorile, A. Hollmann, P.C. Maffía, Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa, Biochim. Biophys. Acta Biomembr. 1861 (7) (2019) 1329-1337. https://doi.org/10.1016/j.bbamem.2019.05.008.

[79]

K. Goldberg, H. Sarig, F. Zaknoon, R.F. Epand, R.M. Epand, A. Mor, Sensitization of gram-negative bacteria by targeting the membrane potential, Faseb. J. 27 (9) (2013) 3818-3826. https://doi.org/10.1096/fj.13-227942.

[80]

L.R. Marks, E.A. Clementi, A.P. Hakansson, The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents, PLoS One 7 (8) (2012) e43514. https://doi.org/10.1371/journal.pone.0043514.

[81]

P. Nicolas, Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides, FEBS J 276 (22) (2009) 6483-6496. https://doi.org/10.1111/j.1742-4658.2009.07359.x.

[82]

T. Schneider, T. Kruse, R. Wimmer, I. Wiedemann, V. Sass, U. Pag, et al., Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II, Science 328 (5982) (2010) 1168-1172. https://doi.org/10.1126/science.1185723.

[83]

H.E. Hasper, N.E. Kramer, J.L. Smith, J.D. Hillman, C. Zachariah, O.P. Kuipers, B.D. Kruijff, E. Breukink, An alternative bactericidal mechanism of action for antibiotic peptides that target lipid II, Science 313 (5793) (2006) 1636-1637. https://doi.org/10.1126/science.1129818.

[84]

H.G. Boman, B. Agerberth, A. Boman, Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine, Infect. Immun. 61 (7) (1993) 2978-2984. https://doi.org/10.1128/iai.61.7.2978-2984.1993.

[85]

A. Patrzykat, C.L. Friedrich, L. Zhang, V. Mendoza, R.E. Hancock, Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli, Antimicrob, Agents Chemother 46 (3) (2002) 605-614. https://doi.org/10.1128/aac.46.3.605-614.2002.

[86]

C. Subbalakshmi, N. Sitaram, Mechanism of antimicrobial action of indolicidin, FEMS Microbiol. Lett. 160 (1) (1998) 91-96. https://doi.org/10.1111/j.1574-6968.1998.tb12896.x.

[87]

Y.H. Nan, K.H. Park, Y. Park, Y.J. Jeon, Y. Kim, I.S. Park, et al., Investigating the effect of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti- inflammatory activity of a Trp-rich antimicrobial peptide indolicidin, FEMS Microbiol. Lett. 292 (1) (2009) 134-140. https://doi.org/10.1111/j.1574-6968.2008.01484.x.

[88]

D. Yang, O. Chertov, J.J. Oppenheim, Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37), J. Leukoc. Biol. 69 (5) (2001) 691-697. https://doi.org/10.1189/jlb.69.5.691.

[89]

F. Niyonsaba, K. Iwabuchi, A. Someya, M. Hirata, H. Matsuda, H. Ogawa, I. Nagaoka, A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis, Immunol 106 (1) (2002) 20-26. https://doi.org/10.1046/j.1365-2567.2002.01398.x.

[90]

G.S. Tjabringa, D.K. Ninaber, J.W. Drijfhout, K.F. Rabe, P.S. Hiemstra, Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors, Int. Arch. Allergy Immunol. 140 (2) (2006) 103-112. https://doi.org/10.1159/000092305.

[91]

N. Mookherjee, D.N. Lippert, P. Hamill, R. Falsafi, A. Nijnik, J. Kindrachuk, et al., Intracellular receptor for human host defense peptide LL-37 in monocytes, J. Immunol. 183 (4) (2009) 2688-2696. https://doi.org/10.4049/jimmunol.0802586.

[92]

P. Montreekachon, P. Chotjumlong, J.G. Bolscher, K. Nazmi, V. Reutrakul, S. Krisanaprakornkit, Involvement of P2X (7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts, J. Periodontal. Res. 46 (3) (2011) 327-337. https://doi.org/10.1111/j.1600-0765.2011.01346.x.

[93]

V. NizeT, Ohtake, X. Lauth, J. Trowbridge, J. Rudisill, R.A. Dorschner, et al., Innate antimicrobial peptide protects the skin from invasive bacterial infection, Nature 414 (6862) (2001) 454-457. https://doi.org/10.1038/35106587.

[94]

M.G. Scott, E. Dullaghan, N. Mookherjee, N. Glavas, M.A. Thompson, et al., An anti- infective peptide that selectively modulates the innate immune response, Nat. Biotechnol. 25 (4) (2007) 465-472. https://doi.org/10.1038/nbt1288.

[95]

J.M. Cavaillon, M. Adib-Conquy, C. Fitting, C. Adrie, D. Payen, Cytokine cascade in sepsis, Scand. J. Infect. Dis. 35 (9) (2003) 535-544. https://doi.org/10.1080/00365540310015935.

[96]

D.A. Zisman, S.L. Kunkel, R.M. Strieter, W.C. Tsai, K. Bucknell, J. Wilkowski, T.J. Standiford, MCP-1 protects mice in lethal endotoxemia, J. Clin. Investig. 99 (12) (1997) 2832-2836. https://doi.org/10.1172/JCI119475.

[97]

Y.R. Bommineni, M. Achanta, J. Alexander, L.T. Sunkara, J.W. Ritchey b, G.-G.- L. Zhang, A fowlicidin-1 analog protects mice from lethal infections induced by methicillin-resistant Staphylococcus aureus, Peptides 31 (7) (2010) 1225-1230. https://doi.org/10.1016/j.peptides.2010.03.037.

[98]

A.M. van der Does, S.J. Bogaards, B. Ravensbergen, H. Beekhuizen, J.T. van Dissel, P.H. Nibbering, Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor- driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens, Antimicrob. Agents Ch. 54 (2) (2010) 811-816. https://doi.org/10.1128/aac.00652-09.

[99]

Y. Luo, Y. Song, Mechanism of antimicrobial peptides: antimicrobial, antiinflammatory and antibiofilm activities, Int. J. Mol. Sci. 22 (21) (2021) 11401. https://doi.org/10.3390/ijms222111401.

[100]

E. Mataraci, S. Dosler, In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms, Antimicrob. Agents Chemother. 56 (12) (2012) 6366-6371. https://doi.org/10.1128/AAC.01180-12.

[101]

C.M. Waters, B.L. Bassler, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol. 21 (2005) 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001.

[102]

F. Orlando, R. Ghiselli, O. Cirioni, D. Minardi, L. Tomasinsig, F. Mocchegiani, et al., BMAP-28 improves the efficacy of vancomycin in rat models of gram-positive cocci ureteral stent infection, Peptides 29 (7) (2008) 1118-1123. https://doi.org/10.1016/j.peptides.2008.03.005.

[103]

N. Balaban, Y. Gov, A. Giacometti, O. Cirioni, R. Ghiselli, F. Mocchegiani, et al., A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci, Antimicrob, Agents Chemother 48 (7) (2004) 2544-2550. https://doi.org/10.1128/AAC.48.7.2544-2550.2004.

[104]

T. Ganz, Defensins: antimicrobial peptides of innate immunity, Nat. Rev. Immunol. 3 (9) (2003) 710-720. https://doi.org/10.1038/nri1180.

[105]

L. Di, Strategic approaches to optimizing peptide ADME properties, AAPS J 17 (2015) 134-143. https://doi.org/10.1208/s12248-014-9687-3.

[106]

O. Scudiero, E. Nigro, M. Cantisani, I. Colavita, M. Leone, F.A. Mercurio, M. Galdiero, A. Pessi, A. Daniele, F. Salvatore, S. Galdiero, Design and activity of a cyclic mini-beta-defensin analog: a novel antimicrobial tool, Int. J. Nanomed. 10 (1) (2015) 6523-6539. https://doi.org/10.2147/IJN.S89610.

[107]

M. Dathe, H. Nikolenko, J. Klose, M. Bienert, Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides, Biochemistry 43 (28) (2004) 9140-9150. https://doi.org/10.1021/bi035948v.

[108]

F. Costa, C. Teixeira, P. Gomes, M.C.L. Martins, Clinical application of AMPs, Adv. Exp. Med. Biol. 1117 (2019) 281-298. https://doi.org/10.1007/978-981-13-3588-4_15.

[109]

S.S. Usmani, G. Bedi, J.S. Samuel, S. Singh, S. Kalra, P. Kumar, A.A. Ahuja, M. Sharma, A. Gautam, G.P.S. Raghava, THPdb: Database of FDA-approved peptide and protein therapeutics, PLoS One 12 (7) (2017) e0181748. https://doi.org/10.1371/journal.pone.0181748.

[110]

O. Cheneval, C.I. Schroeder, T. Durek, P. Walsh, Y.H. Huang, S. Liras, D.A. Price, D.J. Craik, Fmoc-based synthesis of disulfide-rich cyclic peptides, J. Org. Chem. 79 (2014) 5538-5544. https://doi.org/10.1021/jo500699m.

[111]

A. Falanga, E. Nigro, M.G. De Biasi, A. Daniele, G. Morelli, S. Galdiero, O. Scudiero, Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics, Molecules 22 (7) (2017). https://doi.org/10.3390/molecules22071217.

[112]

S.A.H.A. Monaim, Y.E. Jad, A. El-Faham, B.G. de la Torre, F. Albericio, Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study, Bioorg. Med. Chem. 26 (10) (2018) 2788-2796. https://doi.org/10.1016/j.bmc.2017.09.040.

[113]

A. Peschel, H.G. Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance, Nat. Rev. Microbiol. 4 (7) (2006) 529-536. https://doi.org/10.1038/nrmicro1441.

[114]

P.D. Cotter, C. Hill, R.P. Ross, Bacteriocins: developing innate immunity for food, Nat. Rev. Microbiol. 3 (10) (2005) 777-788. https://doi.org/10.1038/nrmicro1273.

[115]

L. Wang, A. Brock, B. Herberich, P.G. Schultz, Expanding the genetic code of Escherichia coli, Science 292 (5516) (2001) 498-500. https://doi.org/10.1126/science.1060077.

[116]

L. Wang, P.G. Schultz, Expanding the genetic code, Angew. Chem. Int. Ed. Engl. 44 (1) (2004) 34-66. https://doi.org/10.1002/anie.200460627.

[117]

B. Oller-Salvia, J.W. Chin, Efficient phage display with multiple distinct noncanonical amino acids using orthogonal ribosome-mediated genetic code expansion, Angew. Chem., Int. Ed. Engl. 131 (32) (2019) 10960-10964. https://doi.org/10.1002/ange.201902658.

[118]

L. Wang, Engineering the genetic code in cells and animals: biological considerations and impacts, Acc. Chem. Res. 50 (11) (2017) 2767-2775. https://doi.org/10.1021/acs.accounts.7b00376.

[119]

L. Wang, A. Brock, B. Herberich, P.G. Schultz, Expanding the genetic code of Escherichia coli, Science 292 (2001) 498-500. https://doi.org/10.1126/science.1060077.

[120]

S.W. Santoro, L. Wang, B. Herberich, D.S. King, P.G. Schultz, An efficient system for the evolution of aminoacyl-tRNA synthetase specificity, Nat. Biotechnol. 20 (10) (2002) 1044-1048. https://doi.org/10.1038/nbt742.

[121]

J.C. Anderson, N. Wu, S.W. Santoro, V. Lakshman, D.S. King, P.G. Schultz,An expanded genetic code with a functional quadruplet codon, Proc. Natl. Acad. Sci. U.S.A. 101 (20) (2004) 7566-7571. https://doi.org/10.1073/pnas.0401517101.

[122]

W. Niu, P.G. Schultz, J. Guo, An expanded genetic code in mammalian cells with a functional quadruplet codon, ACS Chem. Biol. 8 (7) (2013) 1640-1645. https://doi.org/10.1021/cb4001662.

[123]

T.D. Valentini, S.K. Lucas, K.A. Binder, L.C. Cameron, J.A. Motl, J.M. Dunitz, R.C. Hunter, Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota, Nat. Commun. 11 (1) (2020) 2287. https://doi.org/10.1038/s41467-020-16163-2.

[124]

R.J. Ernst, T.P. Krogager, E.S. Maywood, R. Zanchi, V. Beránek, T.S. Elliott, N. P Barry, M.H. Hastings, J.W. Chin, Genetic code expansion in the mouse brain, Nat. Chem. Biol. 12 (10) (2016) 776-778. https://doi.org/10.1038/nchembio.2160.

[125]

J. Liu, J. Hemphill, S. Samanta, M. Tsang, A. Deiters, Genetic code expansion in zebrafish embryos and its application to optical control of cell signalling, J. Am. Chem. Soc. 139 (27) (2017) 9100-9103. https://doi.org/10.1021/jacs.7b02145.

[126]

W. Brown, J. Liu, A. Deiters, Genetic code expansion in animals, ACS Chem. Biol. 13 (9) (2018) 2375-2386. https://doi.org/10.1021/acschembio.8b00520.

[127]

J.W. Chin, T.A. Cropp, J.C. Anderson, M. Mukherji, Z.-W. Zhang, P.G. Schultz, An expanded eukaryotic genetic code, Science 301 (5635) (2003) 964-967. https://doi.org/10.1126/science.1084772.

[128]

N.-X. Wang, Y. Li, W. Niu, M. Sun, R. Cerny, Q. Li, J. Guo, Construction of a liveattenuated HIV-1 vaccine through genetic code expansion, Angew. Chem. 126 (19) (2014) 4967-4971. https://doi.org/10.1002/ange.201402092.

[129]

L. Si, et al., Generation of influenza A viruses as live but replication-incompetent virus vaccines, Science 354 (6316) (2016) 1170-1173. https://doi.org/10.1126/science.aah5869.

[130]

Y. Zheng, et al., Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion, Nucleic Acids Res. 43(11), e73, https://doi.org/10.1093/nar/gkv202.

[131]

K. Krauskopf, K. Lang, Increasing the chemical space of proteins in living cells via genetic code expansion, Curr. Opin. Chem. Biol. 58 (2020) 112-120. https://doi.org/10.1016/j.cbpa.2020.07.012.

[132]

I. Drienovska, G. Roelfes, Expanding the enzyme universe with genetically encoded unnatural amino acids, Nat. Catal. 3 (3) (2020) 193-202. https://doi.org/10.1038/s41929-019-0410-8.

[133]

S. Das, S. Ramakumar, D. Pal, Identifying functionally important cis-peptide containing segments in proteins and their utility in molecular function annotation, FEBS J 281 (24) (2014) 5602-5621. https://doi.org/10.1111/febs.13100.

[134]

K.P. Lu, G. Finn, T.H. Lee, L.K. Nicholson, Prolyl cistransisomerization as a molecular timer, Nat. Chem. Biol. 3 (10) (2007) 619-629. https://doi.org/10.1038/nchembio.2007.35.

[135]

A.F.B. Räder, F. Reichart, M. Weinmüller, H. Kessler, Improving oral bioavailability of cyclic peptides by N-methylation, Bioorg. Med. Chem. 26 (10) (2018) 2766-2773. https://doi.org/10.1016/j.bmc.2017.08.031.

[136]

M.C. Teixeira, C. Carbone, M.C. Sousa, M. Espina, M.L. Garcia, E. Sanchez-Lopez, E.B. Souto, Nanomedicines for the delivery of antimicrobial peptides (AMPs), Nanomaterials 10 (3) (2020) 560. https://doi.org/10.3390/nano10030560.

[137]

M.D. Manniello, A. Moretta, R. Salvia, C. Scieuzo, D. Lucchetti, H. Vogel, et al., Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance, Cell. Mol. Life Sci. 78 (9) (2021) 4259-4282. https://doi.org/10.1007/s00018-021-03784-z.

[138]

Z. Lai, X. Yuan, H. Chen, Y. Zhu, N. Dong, A. Shan, Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability, Biotechnol. Adv. 59 (2022) 107962. https://doi.org/10.1016/j.biotechadv.2022.107962.

[139]

S. Raj, S. Khurana, R. Choudhari, K.K. Kesari, M.A. Kamal, N. Garg, et al., Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy, Semin. Cancer Biol. 69 (2021) 166-177. https://doi.org/10.1016/j.semcancer.2019.11.002.

[140]

M.E. van Gent, M. Ali, P.H. Nibbering, S.N. Kłodzińska, Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections, Pharmaceutics 13 (11) (2021) 1840. https://doi.org/10.3390/pharmaceutics13111840.

[141]

R.K. Thapa, D.B. Diep, H.H. Tønnesen, Topical antimicrobial peptide formulations for wound healing: current developments and future prospects, Acta Biomater 103 (2020) 52-67. https://doi.org/10.1016/j.actbio.2019.12.025.

[142]

J.F. Yao, H. Yang, Y.Z. Zhao, M. Xue, Metabolism of peptide drugs and strategies to improve their metabolic stability, Curr. Drug Metabol. 19 (11) (2018) 892-901. https://doi.org/10.2174/1389200219666180628171531.

[143]

C. Wang, T. Hong, P. Cui, J. Wang, J. Xia, Antimicrobial peptides towards clinical application: delivery and formulation, Adv. Drug Deliv. Rev. 175 (2021) 113818. https://doi.org/10.1016/j.addr.2021.05.028.

[144]

E. Proschak, H. Stark, D. Merk, Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds, J. Med. Chem. 62 (2) (2018) 420-444. https://doi.org/10.1021/acs.jmedchem.8b00760.

[145]

B.H. Gan, J. Gaynord, S.M. Rowe, T. Deingruber, D.R. Spring, The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions, Chem. Soc. Rev. 50 (13) (2021) 7820-7880. https://doi.org/10.1039/D0CS00729C.

[146]

E.E. Gill, O.L. Franco, R.E. Hancock, Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens, Chem. Biol. Drug Des. 85 (1) (2015) 56-78. https://doi.org/10.1111/cbdd.12478.

[147]

X. Chen, J. Han, X. Cai, S. Wang, Antimicrobial peptides: sustainable application informed by evolutionary constraints, Biotechnol. Adv. 60 (2022) 108012. https://doi.org/10.1016/j.biotechadv.2022.108012.

[148]

Y. Jiang, M. Geng, L. Bai, Targeting biofilms therapy: current research strategies and development hurdles, Microorganisms 8 (8) (2020) 1222. https://doi.org/10.3390/microorganisms8081222.

[149]

S. Dosler, E. Mataraci, In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms, Peptides 49 (2013) 53-58. https://doi.org/10.1016/j.peptides.2013.08.008.

[150]

P. Kumar, D. Pletzer, E.F. Haney, N. Rahanjam, J.T.J. Cheng, M. Yue, W. Aljehani, R.E.W. Hancock, J.N. Kizhakkedathu, S.K. Straus, Aurein-derived antimicrobial peptides formulated with pegylated phospholipid micelles to target methicillinresistant Staphylococcus aureus skin infections, ACS Infect. Dis. 5 (3) (2019) 443-453. https://doi.org/10.1021/acsinfecdis.8b00319.

[151]

Z. Ma, J. Han, B. Chang, L. Gao, Z. Lu, F. Lu, H. Zhao, C. Zhang, X. Bie, Membraneactive amphipathic peptide WRL3 with in vitro antibiofilm capability and in vivo efficacy in treating methicillin-resistant Staphylococcus aureus burn wound infections, ACS Infect. Dis. 3 (11) (2017) 820-832. https://doi.org/10.1021/acsinfecdis.7b00100.

[152]

J. Menousek, B. Mishra, M.L. Hanke, C.E. Heim, T. Kielian, G. Wang, Database screening and in vivo efficacy of antimicrobial peptides against methicillinresistant Staphylococcus aureus USA300, Int. J. Antimicrob. Agents 39 (5) (2012) 402-406. https://doi.org/10.1016/j.ijantimicag.2012.02.003.

[153]

M.F. Mohamed, A. Abdelkhalek, M. Seleem, Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus, Sci. Rep. 6 (1) (2016) 29707, https://doi.org/10.1038/srep29707.

[154]

M.F. Mohamed, M.I. Hamed, A. Panitch, M.N. Seleem, Targeting methicillinresistant Staphylococcus aureus with short salt-resistant synthetic peptides, Antimicrob. Agents Chemother. 58 (7) (2014) 4113-4122. https://doi.org/10.1128/aac.02578-14.

[155]

M.F. Mohamed, M.N. Seleem, Efficacy of short novel antimicrobial and antiinflammatory peptides in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection, Drug Des. Dev. Ther. (1979 (2014). https://doi.org/10.2147/DDDT.S72129.

[156]

P. Kumar, D. Pletzer, E. Haney, N. Rahanjam, J. Cheng, M. Yue, W. Aljehani, R. Hancock, J. Kizhakkedathu, S. Straus, Aurein-derived antimicrobial peptides formulated with pegylated phospholipid micelles to target methicillin-resistant Staphylococcus aureus skin infections, ACS Infect. Dis. 5 (3) (2018) 443-453. https://doi.org/10.1021/acsinfecdis.8b00319.

[157]

J.M. Sierra, E. Fusté, F. Rabanal, T. Vinuesa, M. Viñas, An overview of antimicrobial peptides and the latest advances in their development, Expet Opin. Biol. Ther. 17 (6) (2017) 663-676. https://doi.org/10.1080/14712598.2017.1315402.

[158]

L. Wang, N. Wang, W. Zhang, X. Cheng, Z. Yan, G. Shao, X. Wang, R. Wang, C. Fu, Therapeutic peptides: current applications and future directions, Signal Transduct. Targeted Ther. 7 (1) (2022) 48. https://doi.org/10.1038/s41392-022-00904-4.

[159]

H.Y. Chow, Y. Zhang, E. Matheson, X. Li, Ligation technologies for the synthesis of cyclic peptides, Chem. Rev. 119 (17) (2019) 9971-10001. https://doi.org/10.1021/acs.chemrev.8b00657.

[160]

P. Barman, S. Joshi, S. Sharma, S. Preet, S. Sharma, A. Saini, Strategic approaches to improvise peptide drugs as next generation therapeutics, Int. J. Pept. Res. Therapeut. 29 (4) (2023) 61. https://doi.org/10.1007/s10989-023-10524-3.

AI Summary AI Mindmap
PDF (1248KB)

349

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/