Intracellularly driven chemical modifications of antimicrobial secondary metabolites: Potent mechanisms of self-resistance

Xiaohua Li , Jianhua Ju

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100032

PDF (2724KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100032 DOI: 10.1016/j.pscia.2023.100032
Review Article
research-article

Intracellularly driven chemical modifications of antimicrobial secondary metabolites: Potent mechanisms of self-resistance

Author information +
History +
PDF (2724KB)

Abstract

Natural products (NPs), especially antibiotics, exhibit diverse bioactivities and often play critically important roles in dictating and/or driving medical, health, agricultural, animal husbandry, and cosmetic industry initiatives. An important realization in the field of NP applications is that both targeted pathogens and the antibiotic-producing hosts themselves have usually evolved a host of resistance strategies by which to protect themselves. Although the former class of microbes (pathogens) has come to be associated with the global antibiotic resistance crisis, mechanisms by which producing organisms become resistant or tolerant to the ill effects of their bioactive metabolites have begun to attract a great deal of attention. Studies aimed at understanding antibiotic resistance have shown that producer-bourne mechanisms of self-resistance are possible prototypes by which to understand corresponding resistance elements in antibiotic-resistant bacteria. Historically speaking, the most efficient and potent chemistries employed by pathogens to evade harm from antimicrobial NPs have evoked enzymatically-driven transformations. We summarize herein the primary chemical modifications known to impart upon bioactive NP-producing microbes a means of self-defense against their own antimicrobial secondary metabolites; in understanding these chemistries we expect to gain new insights into how antibiotic resistance mechanisms in targeted pathogens might be circumvented or prevented. Such a translation of knowledge has a high likelihood of advancing humanity's ability to counter drug-resistant pathogens.

Keywords

Natural products / Self-resistance / Chemical modifications / Antibiotic resistance / Self-defense / Chemical inactivation

Cite this article

Download citation ▾
Xiaohua Li, Jianhua Ju. Intracellularly driven chemical modifications of antimicrobial secondary metabolites: Potent mechanisms of self-resistance. Pharmaceutical Science Advances, 2024, 2(1): 100032 DOI:10.1016/j.pscia.2023.100032

登录浏览全文

4963

注册一个新账户 忘记密码

Author contribution statement

Xiaohua Li: performed literature research, drafted the paper, and revised the review. Jianhua Ju: initiated and supervised the work, and provided insights.

Both authors have read and approved the final manuscript.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

Related research work in our group was supported by the National Natural Science Foundation of China (22037006, U2106207), Key Science and Technology Project of Hainan Province (ZDKJ202018), Local Innovation and Entrepreneurship Team Project of Guangdong (2019BT02Y262), Open Program of Shen Zhen Bay Laboratory (SZBL2021080601006).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Professor Runping Fang and Professor Weilong Liu from Shandong University for their help in revising the manuscript.

References

[1]

H.Y. Hung, K. Qian, S.L. Morris-Natschke, C.S. Hsu, K.H. Lee, Recent discovery of plant-derived anti-diabetic natural products, Nat. Prod. Rep. 29 (2012) 580-606. https://doi.org/10.1039/C2NP00074A.

[2]

Q. Fan, J. Ma, Q. Xu, J. Zhang, D. Simion, G. Carmen, C. Guo, Animal-derived natural products review: focus on novel modifications and applications, Colloids Surf. B Biointerfaces 128 (2015) 181-190. https://doi.org/10.1016/j.colsurfb.2015.02.033.

[3]

J.V. Pham, M.A. Yilma, A. Feliz, M.T. Majid, N. Maffetone, J.R. Walker, E. Kim, H.J. Cho, J.M. Reynolds, M.C. Song, S.R. Park, Y.J. Yoon, A review of the microbial production of bioactive natural products and biologics, Front. Microbiol. 10 (2019) 1404. https://doi.org/10.3389/fmicb.2019.01404.

[4]

A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, M.R. Prinsep, Marine natural products, Nat. Prod. Rep. 39 (2022) 1122-1171. https://doi.org/10.1039/B006897G.

[5]

R.D. Firn, C.G. Jones, Natural products-a simple model to explain chemical diversity, Nat. Prod. Rep. 20 (2003) 382-391. https://doi.org/10.1039/B208815K.

[6]

M. Saleem, M. Nazir, M.S. Ali, H. Hussain, Y.S. Lee, N. Riaz, A. Jabbar, Antimicrobial natural products: an update on future antibiotic drug candidates, Nat. Prod. Rep. 27 (2010) 238-254. https://doi.org/10.1039/B916096E.

[7]

S.C. Heard, G. Wu, J.M. Winter, Antifungal natural products, Curr. Opin. Biotechnol. 69 (2021) 232-241. https://doi.org/10.1016/j.copbio.2021.02.001.

[8]

A.L. Harvey, R. Edrada-Ebel, R.J. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov. 14 (2015) 111-129. https://doi.org/10.1038/nrd4510.

[9]

Y. Yan, Q. Liu, S.E. Jacobsen, Y. Tang, The impact and prospect of natural product discovery in agriculture: new technologies to explore the diversity of secondary metabolites in plants and microorganisms for applications in agriculture, EMBO Rep 19 (2018) e46824. https://doi.org/10.15252/embr.201846824.

[10]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four Decades from 01/1981 to 09/2019, J Nat Prod 83 (2020) 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.

[11]

T.C. Sparks, D.R. Hahn, N.V. Garizi, Natural products, their derivatives, mimics and synthetic equivalents: role in agrochemical discovery, Pest Manag. Sci. 73 (2017) 700-715. https://doi.org/10.1002/ps.4458.

[12]

G.S. Dbaibo, Old and new targets of antibacterial therapy, J. Med. Liban. 48 (2000) 177-181.

[13]

E. Cundliffe, How antibiotic-producing organisms avoid suicide, Annu. Rev. Microbiol. 43 (1989) 207-233, https://doi.org/10.1146/annurev.mi.43.100189.00123.

[14]

K.H. Almabruk, L.K. Dinh, B. Philmus, Self-resistance of natural product producers: past, present, and future focusing on self-resistant protein variants, ACS Chem. Biol. 13 (2018) 1426-1437. https://doi.org/10.1021/acschembio.8b00173.

[15]

E.C. O’Neill, M. Schorn, C.B. Larson, N. Millán-Aguiñaga, Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining, Crit. Rev. Microbiol. 45 (2019) 255-277. https://doi.org/10.1080/1040841X.2019.1590307.

[16]

L. Wu, Q. Zhang, Z. Deng, Y. Yu, From solo to duet, intersections of natural product assembly with self-resistance, Nat. Prod. Rep. 39 (2022) 919-925. https://doi.org/10.1039/D1NP00064K.

[17]

H. Ogawara, Comparison of antibiotic resistance mechanisms in antibioticproducing and pathogenic bacteria, Molecules 24 (2019) 3430. https://doi. org/10.3390/molecules24193430.

[18]

J.M.A. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J.V. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol. 13 (2015) 42-51. https://doi.org/10.1038/nrmicro3380.

[19]

G.D. Wright, Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv. Drug Deliv. Rev. 57 (2005) 1451-1470. https://doi.org/10.1016/j.addr.2005.04.002.

[20]

G. De Pascale, G.D. Wright, Antibiotic resistance by enzyme inactivation: from mechanisms to solutions, Chembiochem 11 (2010) 1325-1334. https://doi.org/10.1002/cbic.201000067.

[21]

J. Davies, G.D. Wright, Bacterial resistance to aminoglycoside antibiotics, Trends Microbiol. 5 (1997) 234-240. https://doi.org/10.1016/S0966-842X(97)01033-0.

[22]

K. Bush, Past and present perspectives on β-lactamases, Antimicrob. Agents Chemother. 62 (2018) e01076-18. https://doi.org/10.1128/aac.01076-18.

[23]

S. Garneau-Tsodikova, K.J. Labby, Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives, Medchemcomm 7 (2016) 11-27. https://doi.org/10.1039/C5MD00344J.

[24]

G.D. Wright, Q&A: antibiotic resistance: where does it come from and what can we do about it?, BMC Biol. 8 (2010) 123, https://doi.org/10.1186/1741-7007-8-123.

[25]

D.J. Mason, A. Dietz, R.M. Smith, Actino-spectacin, a new antibiotic. I. Discovery and biological properties, Antibiot Chemother (Northfield) 11 (1961) 118-122.

[26]

A.H. Pedersen, P.J. Wiesner, K.K. Holmes, C.J. Johnson, M. Turck, Spectinomycin and penicillin G in the treatment of gonorrhea. A comparative evaluation, JAMA 220 (1972) 205-208. https://doi.org/10.1001/jama.1972.03200020025006.

[27]

M.F. Brink, G. Brink, M.P. Verbeet, H.A. de Boer, Spectinomycin interacts specifically with the residues G1064 and C1192 in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation, Nucleic Acids Res. 22 (1994) 325-331. https://doi.org/10.1093/nar/22.3.325.

[28]

D. Lyutzkanova, J. Distler, J. Altenbuchner, A spectinomycin resistance determinant from the spectinomycin producer Streptomyces flavopersicus, Microbiology 143 (Pt 7) (1997) 2135-2143, https://doi.org/10.1099/00221287-143-7-2135.

[29]

C.E. Cox, Gentamicin, a new aminoglycoside antibiotic: clinical and laboratory studies in urinary tract infection, J. Infect. Dis. 119 (1969) 486-491, https://doi.org/10.1093/infdis/119.4-5.486.

[30]

M.K. Kharel, D.B. Basnet, H.C. Lee, K. Liou, Y.H. Moon, J.J. Kim, J.S. Woo, J.K. Sohng, Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicin-producing Micromonospora echinospora ATCC15835, Mol Cells 18 (2004) 71-78.

[31]

S. Hoshiko, C. Nojiri, K. Matsunaga, K. Katsumata, E. Satoh, K. Nagaoka, Nucleotide sequence of the ribostamycin phosphotransferase gene and of its control region in Streptomyces ribosidificus, Gene 68 (1988) 285-296. https://doi.org/10.1016/0378-1119(88)90031-5.

[32]

M.J. Bibb, M.J. Bibb, J.M. Ward, S.N. Cohen, Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces, Mol. Gen. Genet. 199 (1985) 26-36. https://doi.org/10.1007/BF00327505.

[33]

D. Salauze, J. Davies, Isolation and characterisation of an aminoglycoside phosphotransferase from neomycin-producing Micromonospora chalcea; comparison with that of Streptomyces fradiae and other producers of 4,6- disubstituted 2-deoxystreptamine antibiotics, J. Antibiot. (Tokyo) 44 (1991) 1432-1443. https://doi.org/10.7164/antibiotics.44.1432.

[34]

H.A. Kirst, D.E. Dorman, J.L. Occolowitz, N.D. Jones, J.W. Paschal, R.L. Hamill, E.F. Szymanski, The structure of A201A, a novel nucleoside antibiotic, J. Antibiot. (Tokyo) 38 (1985) 575-586. https://doi.org/10.7164/antibiotics.38.575.

[35]

M.I. Barrasa, J.A. Tercero, A. Jimenez, The aminonucleoside antibiotic A201A is inactivated by a phosphotransferase activity from Streptomyces capreolus NRRL 3817, the producing organism. Isolation and molecular characterization of the relevant encoding gene and its DNA flanking regions, Eur. J. Biochem. 245 (1997) 54-63. https://doi.org/10.1111/j.1432-1033.1997.00054.x.

[36]

Q. Zhu, Q. Chen, Y. Song, H. Huang, J. Li, J. Ma, Q. Li, J. Ju, Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase, Proc Natl Acad Sci U S A 114 (2017) 4948-4953. https://doi.org/10.1073/pnas.1620191114.

[37]

R.H. Skinner, E. Cundliffe, Resistance to the antibiotics viomycin and capreomycin in the Streptomyces species which produce them, J. Gen. Microbiol. 120 (1980) 95-104. https://doi.org/10.1099/00221287-120-1-95.

[38]

Y.C. Pan, Y.L. Wang, S.I. Toh, N.S. Hsu, K.H. Lin, Z. Xu, S.C. Huang, T.K. Wu, T.L. Li, C.Y. Chang, Dual-mechanism confers self-resistance to the antituberculosis antibiotic capreomycin, ACS Chem. Biol. 17 (2022) 138-146. https://doi.org/10.1021/acschembio.1c00799.

[39]

E.B. Herr, M.O. Redstone, Chemical and physical characterization of capreomycin, Ann. N. Y. Acad. Sci. 135 (1966) 940-946. https://doi.org/10.1111/j.1749-6632.1966.tb45535.x.

[40]

E.A. Felnagle, M.R. Rondon, A.D. Berti, H.A. Crosby, M.G. Thomas, Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin, Appl. Environ. Microbiol. 73 (2007) 4162-4170. https://doi.org/10.1128/AEM.00485-07.

[41]

Y. Rockser, U.F. Wehmeier, The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA. O: identification, isolation and characterization, J. Biotechnol. 140 (2009) 114-123. https://doi.org/10.1016/j.jbiotec.2008.10.016.

[42]

M.M. Draelos, A. Thanapipatsiri, H. Sucipto, K. Yokoyama, Cryptic phosphorylation in nucleoside natural product biosynthesis, Nat. Chem. Biol. 17 (2021) 213-221. https://doi.org/10.1038/s41589-020-00656-8.

[43]

P.M. Flatt, T. Mahmud, Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds, Nat. Prod. Rep. 24 (2007) 358-392. https://doi.org/10.1039/B603816F.

[44]

S. Kobayashi, T. Kuzuyama, H. Seto, Characterization of the fomA and fomB gene products from Streptomyces wedmorensis, which confer fosfomycin resistance on Escherichia coli, Antimicrob. Agents Chemother. 44 (2000) 647-650. https://doi.org/10.1128/aac.44.3.647-650.2000.

[45]

V. Dhote, S. Gupta, K.A. Reynolds, An O-phosphotransferase catalyzes phosphorylation of hygromycin A in the antibiotic-producing organism Streptomyces hygroscopicus, Antimicrob. Agents Chemother. 52 (2008) 3580-3588. https://doi.org/10.1128/aac.00157-08.

[46]

Z. Yang, M. Funabashi, K. Nonaka, M. Hosobuchi, T. Shibata, P. Pahari, S.G. Van Lanen, Functional and kinetic analysis of the phosphotransferase CapP conferring selective self-resistance to capuramycin antibiotics, J. Biol. Chem. 285 (2010) 12899-12905. https://doi.org/10.1074/jbc.M110.104141.

[47]

E.P. Lester, G.J. Matz, Bleomycin, Otolaryngol, Head Neck Surg 87 (1979) 399-400, 1979, https://doi.org/10.1177/019459987908700401.

[48]

M. Konishi, K. Saito, K. Numata, T. Tsuno, K. Asama, Tallysomycin, a new antitumor antibiotic complex related to bleomycin. II. Structure determination of tallysomycins A and B, J. Antibiot. (Tokyo) 30 (1977) 789-805. https://doi.org/10.7164/antibiotics.30.789.

[49]

K. Maeda, H. Kosaka, K. Yagishita, H. Umezawa, A new antibiotic, phleomycin, J. Antibiot. (Tokyo) 9 (1956) 82-85. https://doi.org/10.11554/antibioticsa.9.2_82.

[50]

L. Wang, B.S. Yun, N.P. George, E. Wendt-Pienkowski, U. Galm, T.J. Oh, J.M. Coughlin, G. Zhang, M. Tao, B. Shen, Glycopeptide antitumor antibiotic zorbamycin from Streptomyces flavoviridis ATCC 21892: strain improvement and structure elucidation, J. Nat. Prod. 70 (2007) 402-406. https://doi.org/10.1021/np060592k.

[51]

S.M. Hecht, Bleomycin: new perspectives on the mechanism of action, J. Nat. Prod. 63 (2000) 158-168. https://doi.org/10.1021/np990549f.

[52]

J.M. Coughlin, J.D. Rudolf, E. Wendt-Pienkowski, L. Wang, C. Unsin, U. Galm, D. Yang, M. Tao, B. Shen, BlmB and TlmB provide resistance to the bleomycin family of antitumor antibiotics by N-acetylating metal-free bleomycin, tallysomycin, phleomycin, and zorbamycin, Biochemistry 53 (2014) 6901-6909. https://doi.org/10.1021/bi501121e.

[53]

R.M. Burger, J. Peisach, S.B. Horwitz, Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA, J. Biol. Chem. 256 (1981) 11636-11644. https://doi.org/10.1016/S0021-9258(19)68452-8.

[54]

S. Takeuchi, K. Hirayama, K. Ueda, H. Sakai, H. Yonehara, S Blasticidin a new antibiotic, J. Antibiot. (Tokyo) 11 (1958) 1-5. https://doi.org/10.11554/antibioticsa.11.1_1.

[55]

H. Yamaguchi, C. Yamamoto, N. Tanaka, Inhibition of protein synthesis by blasticidin S. I. Studies with cell-free systems from bacterial and mammalian cells, J. Biochem. 57 (1965) 667-677.

[56]

K.T. Huang, T. Misato, H. Asuyama, Selective toxicity OF blasticidin S to PIRICULARIA oryzae and PELLICULARIA sasakii, J. Antibiot. (Tokyo) 17 (1964) 71-74. https://doi.org/10.11554/antibioticsa.17.2_71.

[57]

X.K. Wang, Y.C. Zhao, Y.J. Gao, X.K. Luo, A.Q. Du, Z.X. Deng, T.M. Zabriskie, X.Y. He, M. Jiang,A [3Fe-4S] Cluster and tRNA-dependent Aminoacyltransferase BlsK in the Biosynthesis of Blasticidin S, Proc. Natl. Acad. Sci. 118 (2021) e2102318118. https://doi.org/10.1073/pnas.2102318118.

[58]

A. Lanois-Nouri, L. Pantel, J. Fu, J. Houard, J.C. Ogier, Y.S. Polikanov, E. Racine, H. Wang, S. Gaudriault, A. Givaudan, M. Gualtieri, The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific, mBio 13 (2022) e0282621, https://doi.org/10.1128/mbio.02826-21.

[59]

L. Pantel, T. Florin, M. Dobosz-Bartoszek, E. Racine, M. Sarciaux, M. Serri, J. Houard, J.M. Campagne, R.M. de Figueiredo, C. Midrier, S. Gaudriault, A. Givaudan, A. Lanois, S. Forst, A. Aumelas, C. Cotteaux-Lautard, J.M. Bolla, C. Vingsbo Lundberg, D.L. Huseby, D. Hughes, P. Villain-Guillot, A.S. Mankin, Y.S. Polikanov, M. Gualtieri, Odilorhabdins, Antibacterial agents that cause miscoding by binding at a new ribosomal site, Mol Cell 70 (2018) 83-94. https://doi.org/10.1016/j.molcel.2018.03.001.

[60]

T. Dang, B. Loll, S. Müller, R. Skobalj, J. Ebeling, T. Bulatov, S. Gensel, J. Göbel, M.C. Wahl, E. Genersch, A. Mainz, R.D. Süssmuth, Molecular basis of antibiotic self-resistance in a bee larvae pathogen, Nat. Commun. 13 (2022) 2349. https://doi.org/10.1038/s41467-022-29829-w.

[61]

V. Agarwal, A. Metlitskaya, K. Severinov, S.K. Nair, Structural basis for microcin C7 inactivation by the MccE acetyltransferase, J. Biol. Chem. 286 (2011) 21295-21303. https://doi.org/10.1074/jbc.M111.226282.

[62]

M.K. Kharel, B. Subba, D.B. Basnet, J.S. Woo, H.C. Lee, K. Liou, J.K. Sohng, A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: comparison with gentamicin biosynthetic gene cluster, Arch. Biochem. Biophys. 429 (2004) 204-214. https://doi.org/10.1016/j.abb.2004.06.009.

[63]

E.L. Westman, M. Yan, N. Waglechner, K. Koteva, G.D. Wright, Self resistance to the atypical cationic antimicrobial peptide edeine of Brevibacillus brevis Vm4 by the N-acetyltransferase EdeQ, Chem Biol 20 (2013) 983-990. http://dx.doi.org/10.1016/j.chembiol.2013.06.010.

[64]

I. Haupt, H. Thrum, D. Noack, Self-resistance of the nourseothricin-producing strain Streptomyces noursei, J. Basic Microbiol. 26 (1986) 323-328. https://doi.org/10.1002/jobm.3620260604.

[65]

F. Cao, L.F. Ma, L.S. Hu, C.X. Xu, X. Chen, Z.J. Zhan, Q.W. Zhao, X.M. Mao, Coordination of polyketide release and multiple detoxification pathways for tolerable production of fungal mycotoxins, Angew Chem. Int. Ed. Engl. 62 (2023) e202214814. https://doi.org/10.1002/ange.202214814.

[66]

C.T. Walsh, H.C. Losey, C.L. Freel Meyers, Antibiotic glycosyltransferases, Biochem. Soc. Trans. 31 (2003) 487-492, https://doi.org/10.1042/bst0310487.

[67]

S.H. Choi, H.S. Kim, Y.J. Yoon, D.M. Kim, E.Y. Lee, Glycosyltransferase and its application to glycodiversification of natural products, J. Ind. Eng. Chem. 18 (2012) 1208-1212. https://doi.org/10.1016/j.jiec.2012.01.048.

[68]

L. Cuthbertson, S.K. Ahn, J.R. Nodwell, Deglycosylation as a mechanism of inducible antibiotic resistance revealed using a global relational tree for onecomponent regulators, Chem. Biol. 20 (2013) 232-240. http://dx.doi.org/10.1016/j.chembiol.2012.11.011.

[69]

J.A. Waitz, A.C. Horan, M. Kalyanpur, B.K. Lee, D. Loebenberg, J.A. Marquez, G. Miller, M.G. Patel, Kijanimicin (Sch 25663), a novel antibiotic produced by Actinomadura kijaniata SCC 1256. Fermentation, isolation, characterization and biological properties, J. Antibiot. 34 (1981) 1101-1106. https://doi.org/10.7164/antibiotics.34.1101.

[70]

W.T. Bradner, C.A. Claridge, J.B. Huftalen, Antitumor activity of kijanimicin, J. Antibiot. 36 (1983) 1078-1079. https://doi.org/10.7164/antibiotics.36.1078.

[71]

B. Tan, L. Zhang, Q. Zhang, S. Chen, W. Xiong, Y. Zhu, C. Zhang, A widespread glycosidase confers lobophorin resistance and host-dependent structural diversity, Angew Chem. Int. Ed. Engl. 62 (2023) e202302043, https://doi.org/10.1002/anie.202302043.

[72]

L.M. Quirós, I. Aguirrezabalaga, C. Olano, C. Méndez, J.A. Salas, Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus, Mol. Microbiol. 28 (1998) 1177-1185. https://doi.org/10.1046/j.1365-2958.1998.00880.x.

[73]

A. Gourmelen, M.H. Blondelet-Rouault, J.L. Pernodet, Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens, Antimicrob. Agents Chemother. 42 (1998) 2612-2619. https://doi.org/10.1128/aac.42.10.2612.

[74]

H. Wang, W.A. van der Donk, Substrate selectivity of the sublancin Sglycosyltransferase, J. Am. Chem. Soc. 133 (2011) 16394-16397. https://doi.org/10.1021/ja2075168.

[75]

C. Vilches, C. Hernandez, C. Mendez, J.A. Salas, Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus, J. Bacteriol. 174 (1992) 161-165. https://doi.org/10.1128/jb.174.1.161-165.1992.

[76]

J. Sasaki, K. Mizoue, S. Morimoto, S. Omura, Microbial glycosylation of macrolide antibiotics by Streptomyces hygroscopicus ATCC 31080 and distribution of a macrolide glycosyl transferase in several Streptomyces strains, J. Antibiot. (Tokyo) 49 (1996) 1110-1118. https://doi.org/10.7164/antibiotics.49.1110.

[77]

S. Pinnert-Sindico, A new species of Streptomyces producing antibiotics Streptomyces ambofaciens n. sp., cultural characteristics, Ann. Inst. Pasteur. 87 (1954) 702-707.

[78]

J.L. Pernodet, M.T. Alegre, M.H. Blondelet-Rouault, M. Guérineau, Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms, J. Gen. Microbiol. 139 (1993) 1003-1011. https://doi.org/10.1099/00221287-139-5-1003.

[79]

J.L. Pernodet, A. Gourmelen, M.H. Blondelet-Rouault, E. Cundliffe, Dispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens, Microbiology 145 (Pt 9) (1999) 2355-2364. https://doi.org/10.1099/00221287-145-9-2355.

[80]

T.J. Oman, J.M. Boettcher, H. Wang, X.N. Okalibe, W.A. van der Donk, Sublancin is not a lantibiotic but an S-linked glycopeptide, Nat. Chem. Biol. 7 (2011) 78-80. https://doi.org/10.1038/nchembio.509.

[81]

Y. Xue, D.H. Sherman, Biosynthesis and combinatorial biosynthesis of pikromycinrelated macrolides in Streptomyces venezuelae, Metab. Eng. 3 (2001) 15-26. https://doi.org/10.1006/mben.2000.0167.

[82]

L. Zhao, N.J. Beyer, S.A. Borisova, H.W. Liu, Beta-glucosylation as a part of selfresistance mechanism in methymycin/pikromycin producing strain Streptomyces venezuelae, Biochemistry 42 (2003) 14794-14804. https://doi.org/10.1021/bi035501m.

[83]

A. Erb, H. Weiss, J. Härle, A. Bechthold, A bacterial glycosyltransferase gene toolbox: generation and applications, Phytochemistry 70 (2009) 1812-1821. https://doi.org/10.1016/j.phytochem.2009.05.019.

[84]

P. Wang, X. Gao, Y. Tang, Complexity generation during natural product biosynthesis using redox enzymes, Curr. Opin. Chem. Biol. 16 (2012) 362-369. https://doi.org/10.1016/j.cbpa.2012.04.008.

[85]

G.J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, The Baeyer-Villiger reaction: new developments toward greener procedures, Chem Rev 104 (2004) 4105-4124. https://doi.org/10.1021/cr030011l.

[86]

Y. Li, X. Yang, Z. Deng, D. Zhu, Baeyer-Villiger monooxygenases in the biosynthesis of microbial secondary metabolites, Sheng Wu Gong Cheng, Xue Bao 35 (2019) 351-362. https://doi.org/10.13345/j.cjb.180294.

[87]

C. Tolmie, M.S. Smit, D.J. Opperman, Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds, Nat. Prod. Rep. 36 (2019) 326-353. https://doi.org/10.1039/C8NP00054A.

[88]

X. Ji, J. Tu, Y. Song, C. Zhang, L. Wang, Q. Li, J. Ju, A luciferase-like monooxygenase and flavin reductase pair AbmE2/AbmZ catalyzes baeyer-villiger oxidation in neoabyssomicin biosynthesis, ACS Catal 10 (2020) 2591-2595. https://doi.org/10.1021/acscatal.9b05488.

[89]

D.M. Gardiner, P. Waring, B.J. Howlett, The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis, Microbiology 151 (2005) 1021-1032. https://doi.org/10.1099/mic.0.27847-0.

[90]

K.J. Kwon-Chung, J.A. Sugui,What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med. Mycol. 47 (Suppl 1) (2009) S97-S103. https://doi.org/10.1080/13693780802056012.

[91]

C.L. Chai, P. Waring, Redox sensitive epidithiodioxopiperazines in biological mechanisms of toxicity, Redox Rep 5 (2000) 257-264. https://doi.org/10.1179/135100000101535799.

[92]

D.H. Scharf, N. Remme, T. Heinekamp, P. Hortschansky, A.A. Brakhage, C. Hertweck, Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus, J. Am. Chem. Soc. 132 (2010) 10136-10141. https://doi.org/10.1021/ja103262m.

[93]

A.J. Sporer, C. Beierschmitt, A. Bendebury, K.E. Zink, A. Price-Whelan, M.C. Buzzeo, L.M. Sanchez, L.E.P. Dietrich, Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance, Microbiology 164 (2018) 790-800. https://doi.org/10.1099/mic.0.000657.

[94]

L.E.P. Dietrich, T.K. Teal, A. Price-Whelan, D.K. Newman, Redox-active antibiotics control gene expression and community behavior in divergent bacteria, Science 321 (2008) 1203-1206. https://doi.org/10.1126/science.1160619.

[95]

J. Liu, Y. Zhao, Z.Q. Fu, F. Liu, Monooxygenase LaPhzX is involved in selfresistance mechanisms during the biosynthesis of -oxide phenazine myxin, J. Agric. Food Chem. 69 (2021) 13524-13532. https://doi.org/10.1021/acs.jafc.1c05206.

[96]

G. Chowdhury, U. Sarkar, S. Pullen, W.R. Wilson, A. Rajapakse, T. Fuchs-Knotts, K.S. Gates, DNA strand cleavage by the phenazine di-N-oxide natural product myxin under both aerobic and anaerobic conditions, Chem. Res. Toxicol. 25 (2012) 197-206. https://doi.org/10.1021/tx2004213.

[97]

Y. Zhao, G. Qian, Y. Ye, S. Wright, H. Chen, Y. Shen, F. Liu, L. Du, Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from lysobacter antibioticus, Org. Lett. 18 (2016) 2495-2498. https://doi.org/10.1021/acs.orglett.6b01089.

[98]

Y. Zhao, J. Liu, T. Jiang, R. Hou, G. Xu, H. Xu, F. Liu, Resistance-nodulationdivision efflux pump, LexABC, contributes to self-resistance of the phenazine di- oxide natural product myxin in, Front. Microbiol. 12 (2021) 618513. https://doi. org/10.3389/fmicb.2021.618513.

[99]

P. Wiemann, C.J. Guo, J.M. Palmer, R. Sekonyela, C.C.C. Wang, N.P. Keller, Prototype of an intertwined secondary-metabolite supercluster, Proc. Natl. Acad. Sci. 110 (2013) 17065-17070. https://doi.org/10.1073/pnas.1313258110.

[100]

M. Li, L. Kang, X. Ding, J. Liu, Q. Liu, Y. Shao, I. Molnár, F. Chen, Monasone Naphthoquinone Biosynthesis and Resistance in Fungi, mBio 11 (2020) e02676-19. https://doi.org/10.1128/mbio.02676-19.

[101]

T. Müller, L. Johann, B. Jannack, M. Brückner, D.A. Lanfranchi, H. Bauer, C. Sanchez, V. Yardley, C. Deregnaucourt, J. Schrével, M. Lanzer, R.H. Schirmer, E. Davioud-Charvet, Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones-a new strategy to combat malarial parasites, J. Am. Chem. Soc. 133 (2011) 11557-11571. https://doi.org/10.1021/ja201729z.

[102]

K.H. Michel, P.V. Demarco, R. Nagarjan, The isolation and structure elucidation of macrocyclic lactone antibiotic, A26771B, J. Antibiot. 30 (1977) 571-575. https://doi.org/10.7164/antibiotics.30.571.

[103]

F. Xiao, S. Dong, Y. Liu, Y. Feng, H. Li, C.H. Yun, Q. Cui, W. Li, Structural basis of specificity for carboxyl-terminated acyl donors in a bacterial acyltransferase, J. Am. Chem. Soc. 142 (2020) 16031-16038. https://doi.org/10.1021/jacs.0c07331.

[104]

S. Canova, R. Lépine, A. Thys, A. Baron, D. Roche, Synthesis and biological properties of macrolactam analogs of the natural product macrolide (-)-A26771B, Bioorg. Med. Chem. Lett. 21 (2011) 4768-4772. https://doi.org/10.1016/j.bmcl.2011.06.073.

[105]

Y. Zhang, J. Bai, L. Zhang, C. Zhang, B. Liu, Y. Hu, Self-resistance in the biosynthesis of fungal macrolides involving cycles of extracellular oxidative activation and intracellular reductive inactivation, Angew Chem. Int. Ed. Engl. 60 (2021) 6639-6645. https://doi.org/10.1002/anie.202015442.

[106]

C. Gui, J. Yuan, X. Mo, H. Huang, S. Zhang, Y.C. Gu, J. Ju, Cytotoxic anthracycline metabolites from a recombinant Streptomyces, J. Nat. Prod. 81 (2018) 1278-1289. https://doi.org/10.1021/acs.jnatprod.8b00212.

[107]

C. Gui, X. Mo, Y.C. Gu, J. Ju, Elucidating the sugar tailoring steps in the cytorhodin biosynthetic pathway, Org. Lett. 19 (2017) 5617-5620. https://doi.org/10.1021/acs.orglett.7b02758.

[108]

C. Gui, J. Chen, Q. Xie, X. Mo, S. Zhang, H. Zhang, J. Ma, Q. Li, Y.C. Gu, J. Ju, CytA, a reductase in the cytorhodin biosynthesis pathway, inactivates anthracycline drugs in, Commun, Biol 2 (2019) 454. https://doi.org/10.1038/s42003-019-0699-5.

[109]

N. Shao, X. Ma, Y.Y. Zhang, D. Yang, M. Ma, G.L. Tang, Dihydrofolate reductaselike protein inactivates hemiaminal pharmacophore for self-resistance in safracin biosynthesis, Acta Pharm. Sin. B 13 (2022) 1318-1325. https://doi.org/10.1016/j.apsb.2022.10.005.

[110]

J.D. Scott, R.M. Williams, Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics, Chem. Rev. 102 (2002) 1669-1730. https://doi.org/10.1021/cr010212u.

[111]

W.H. Wen, Y. Zhang, Y.Y. Zhang, Q. Yu, C.C. Jiang, M.C. Tang, J.Y. Pu, L. Wu, Y.L. Zhao, T. Shi, J. Zhou, G.L. Tang, Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics, Nat. Commun. 12 (2021) 7085. https://doi.org/10.1038/s41467-021-27404-3.

[112]

L.A. Wessjohann, W. Brandt, T. Thiemann, Biosynthesis and metabolism of cyclopropane rings in natural compounds, Chem. Rev. 103 (2003) 1625-1648. https://doi.org/10.1021/cr0100188.

[113]

M.S. Tichenor, D.L. Boger, Yatakemycin: total synthesis, DNA alkylation and biological properties, Nat. Prod. Rep. 25 (2008) 220-226. https://doi.org/10.1039/B705665F.

[114]

J.P. Parrish, D.B. Kastrinsky, S.E. Wolkenberg, Y. Igarashi, D.L. Boger, DNA alkylation properties of yatakemycin, J. Am. Chem. Soc. 125 (2003) 10971-10976. https://doi.org/10.1021/ja035984h.

[115]

H. Yuan, J. Zhang, Y. Cai, S. Wu, K. Yang, H.C.S. Chan, W. Huang, W.B. Jin, Y. Li, Y. Yin, Y. Igarashi, S. Yuan, J. Zhou, G.L. Tang, GyrI-like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection, Nat. Commun. 8 (2017) 1485. https://doi.org/10.1038/s41467-017-01508-1.

[116]

H. Xu, W. Huang, Q.L. He, Z.X. Zhao, F. Zhang, R. Wang, J. Kang, G.L. Tang, Selfresistance to an antitumor antibiotic: a DNA glycosylase triggers the base-excision repair system in yatakemycin biosynthesis, Angew Chem. Int. Ed. Engl. 51 (2012) 10532-10536. https://doi.org/10.1002/anie.201204109.

[117]

P. Tripathi, E.E. Shine, A.R. Healy, C.S. Kim, S.B. Herzon, S.D. Bruner, J.M. Crawford, ClbS is a cyclopropane hydrolase that confers colibactin resistance, J. Am. Chem. Soc. 139 (2017) 17719-17722. https://doi.org/10.1021/jacs.7b09971.

[118]

S. O’Connor, L.K. Lam, N.D. Jones, M.O. Chaney, Apramycin a unique aminocyclitol antibiotic, J. Org. Chem. 41 (1976) 2087-2092. https://doi.org/10.1021/jo00874a003.

[119]

M. Ishikawa, N. García-Mateo, A. Ćusak, I. López-Hernández, M. Fernández- Martínez, M. Müller, L. Rüttiger, W. Singer, H. Löwenheim, G. Kosec, Ś. Fujs, L. Martínez-Martínez, T. Schimmang, H. Petković, M. Knipper, M.B. Durán-Alonso, Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use, Sci. Rep. 9 (2019) 2410. https://doi.org/10.1038/s41598-019-38634-3.

[120]

E.C. Böttger, D. Crich, Aminoglycosides: time for the resurrection of a neglected class of antibacterials? ACS Infect. Dis. 6 (2020) 168-172. https://doi.org/10.1021/acsinfecdis.9b00441.

[121]

Q. Zhang, H.T. Chi, L. Wu, Z. Deng, Y. Yu, Two cryptic self-resistance mechanisms in Streptomyces tenebrarius reveal insights into the biosynthesis of apramycin, Angew Chem. Int. Ed. Engl. 60 (2021) 8990-8996. https://doi.org/10.1002/ange.202100687.

[122]

C.J. Thompson, R.H. Skinner, J. Thompson, J.M. Ward, D.A. Hopwood, E. Cundliffe, Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes, J. Bacteriol. 151 (1982) 678-685. https://doi.org/10.1128/jb.151.2.678-685.1982.

[123]

J.A. Pérez-González, M. López-Cabrera, J.M. Pardo, A. Jiménez, Biochemical characterization of two cloned resistance determinants encoding a paromomycin acetyltransferase and a paromomycin phosphotransferase from Streptomyces rimosus forma paromomycinus, J. Bacteriol. 171 (1989) 329-334. https://doi.org/10.1128/jb.171.1.329-334.1989.

[124]

M. Kojima, N. Ezaki, S. Amano, S. Inouye, T. Nida, Bioconversion of ribostamycin (SF-733). II. Isolation and structure of 3-N-acetylribostamycin, a microbiologically inactive product of ribostamycin produced by Streptomyces ribosidificus, J. Antibiot. 28 (1975) 42-47. https://doi.org/10.7164/antibiotics.28.42.

[125]

L.A. McDonald, L.R. Barbieri, G.T. Carter, E. Lenoy, J. Lotvin, P.J. Petersen, M.M. Siegel, G. Singh, R.T. Williamson, Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors, J. Am. Chem. Soc. 124 (2002) 10260-10261. https://doi.org/10.1021/ja017748h.

[126]

D. Wiegmann, S. Koppermann, M. Wirth, G. Niro, K. Leyerer, C. Ducho, Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents, Beilstein J. Org. Chem. 12 (2016) 769-795. https://doi.org/10.3762/bjoc.12.77.

[127]

Z. Cui, X.C. Wang, X. Liu, A. Lemke, S. Koppermann, C. Ducho, J. Rohr, J.S. Thorson, S.G. Van Lanen, Self-resistance during muraymycin biosynthesis: a complementary nucleotidyltransferase and phosphotransferase with identical modification sites and distinct temporal order, Antimicrob. Agents Chemother. 62 (2018) e00193-18. https://doi.org/10.1128/aac.00193-18.

[128]

L. Cheng, W. Chen, L. Zhai, D. Xu, T. Huang, S. Lin, X. Zhou, Z. Deng, Identification of the gene cluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471, Mol. Biosyst. 7 (2011) 920-927. https://doi.org/10.1039/C0MB00237B.

[129]

V.H. Le, M. Inai, R.M. Williams, T. Kan, Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics, Nat. Prod. Rep. 32 (2015) 328-347. https://doi.org/10.1039/C4NP00051J.

[130]

D. Kluepfel, H.A. Baker, G. Piattoni, S.N. Sehgal, A. Sidorowicz, K. Singh, C. Vézina, Naphthyridinomycin a new broad-spectrum antibiotic, J. Antibiot. 28 (1975) 497-502. https://doi.org/10.7164/antibiotics.28.497.

[131]

Y. Zhang, W.H. Wen, J.Y. Pu, M.C. Tang, L. Zhang, C. Peng, Y. Xu, G.L. Tang,Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis, Proc. Natl. Acad. Sci. 115 (2018) 11232-11237. https://doi.org/10.1073/pnas.1800502115.

[132]

M. Kenig, C. Reading, Holomycin and an antibiotic (MM 19290) related to tunicamycin, metabolites of Streptomyces clavuligerus, J. Antibiot. 32 (1979) 549-554. https://doi.org/10.7164/antibiotics.32.549.

[133]

B. Oliva, A. O’Neill, J.M. Wilson, P.J. O’Hanlon, I. Chopra, Antimicrobial properties and mode of action of the pyrrothine holomycin, Antimicrob. Agents Chemother. 45 (2001) 532-539. https://doi.org/10.1128/aac.45.2.532-539.2001.

[134]

B. Li, C.T. Walsh,Identification of the gene cluster for the dithiolopyrrolone antibiotic holomycin in Streptomyces clavuligerus, Proc. Natl. Acad. Sci. 107 (2010) 19731-19735. https://doi.org/10.1073/pnas.1014140107.

[135]

B. Li, C.T. Walsh, Streptomyces clavuligerus HlmI is an intramolecular disulfideforming dithiol oxidase in holomycin biosynthesis, Biochemistry 50 (2011) 4615-4622. https://doi.org/10.1021/bi200321c.

[136]

B. Li, R.R. Forseth, A.A. Bowers, F.C. Schroeder, C.T. Walsh, A backup plan for selfprotection: S-methylation of holomycin biosynthetic intermediates in Streptomyces clavuligerus, Chembiochem 13 (2012) 2521-2526. https://doi.org/10.1002/cbic.201200536.

[137]

X. Wang, Y. Lu, K.A. Shaaban, G. Wang, X. Xia, Y. Zhu, Editorial: bioactive natural products from microbes: isolation, characterization, biosynthesis and structure modification, Front. Chem. 10 (2022) 883652. https://doi.org/10.3389/fchem.2022.883652.

[138]

T.C. Sparks, R.J. Bryant, Impact of natural products on discovery of, and innovation in, crop protection compounds, Pest Manag. Sci. 78 (2022) 399-408. https://doi.org/10.1002/ps.6653.

[139]

N. Lee, S. Hwang, J. Kim, S. Cho, B. Palsson, B.K. Cho, Mini review: genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in, Comput. Struct. Biotechnol. J. 18 (2020) 1548-1556. https://doi.org/10.1016/j.csbj.2020.06.024.

[140]

K. Blin, H.U. Kim, M.H. Medema, T. Weber, Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters, Briefings Bioinf 20 (2019) 1103-1113. https://doi.org/10.1093/bib/bbx146.

[141]

D.I. Andersson, B.R. Levin, The biological cost of antibiotic resistance, Curr. Opin. Microbiol. 2 (1999) 489-493. https://doi.org/10.1128/9781555815615.ch21.

[142]

T.A. Wencewicz, Crossroads of antibiotic resistance and biosynthesis, J. Mol. Biol. 431 (2019) 3370-3399. https://doi.org/10.1016/j.jmb.2019.06.033.

[143]

E. Cundliffe, Self-protection Mechanisms in Antibiotic Producers, Ciba. Found, Symp 171 (1992) 199-208. https://doi.org/10.1002/9780470514344.ch12.

[144]

V.M. D’Costa, K.M. McGrann, D.W. Hughes, G.D. Wright, Sampling the antibiotic resistome, Science 311 (2006) 374-377. https://doi.org/10.1126/science.1120800.

[145]

Y. Yan, N. Liu, Y. Tang, Recent developments in self-resistance gene directed natural product discovery, Nat. Prod. Rep. 37 (2020) 879-892. https://doi.org/10.1039/C9NP00050J.

[146]

B. Zhong, J. Wan, C. Shang, J. Wen, Y. Wang, J. Bai, S. Cen, Y. Hu, Biosynthesis of rumbrins and inspiration for discovery of HIV inhibitors, Acta Pharm. Sin. B 12 (2022) 4193-4203. https://doi.org/10.1016/j.apsb.2022.02.005.

[147]

R. Benveniste, J. Davies,Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria, Proc. Natl. Acad. Sci. 70 (1973) 2276-2280. https://doi.org/10.1073/pnas.70.8.2276.

[148]

J.A. Tobert, Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors, Nat. Rev. Drug Discov. 2 (2003) 517-526. https://doi.org/10.1038/nrd1112.

[149]

L.C. Blasiak, C.L. Drennan, Structural perspective on enzymatic halogenation, Acc. Chem. Res. 42 (2009) 147-155. https://doi.org/10.1021/ar800088r.

[150]

L. Fang, G. Zhang, O. El-Halfawy, M. Simon, E.D. Brown, B.A. Pfeifer, Broadened glycosylation patterning of heterologously produced erythromycin, Biotechnol. Bioeng. 115 (2018) 2771-2777. https://doi.org/10.1002/bit.26735.

AI Summary AI Mindmap
PDF (2724KB)

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/