The effect of particle size on drug bioavailability in various parts of the body

Zi Hong Mok

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100031

PDF (2507KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100031 DOI: 10.1016/j.pscia.2023.100031
Review Article
research-article

The effect of particle size on drug bioavailability in various parts of the body

Author information +
History +
PDF (2507KB)

Abstract

Multiple mechanisms are involved in driving the efficacy of drug delivery. Drug particle size is one of the challenges as particles need to be delivered from the external environment, into the circulation or interstitial fluid and transiting the cell membranes for cellular internalisation. Small particles are presumably easier to be internalised, yet they are not easy to retain as they are subject to fast clearance. Big particles do not cross biological barriers as easily, but their size distribution is easier to be controlled. Because of the various routes of administration, the size range of these particles will also need to be catered for the anatomical, biological, and dynamic barriers involved. This review hopes to provide an insight into the range of particle size that has been engineered for drug delivery via various routes of administration of the body, such as to cross the epithelium of gastrointestinal tract, lungs, skin, blood-brain barrier, kidney and liver, the eye, nose, and ear, the cancer tumour matrix and into the muscles. While successful drug delivery also depends on the material properties of the delivery systems and the bio/nano interface related properties, this review focuses on the importance of particle size for enhancing bioavailability at the various organs of the body.

Keywords

Particle size / Nanoparticles / Microparticles / Absorption / Internalisation

Cite this article

Download citation ▾
Zi Hong Mok. The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances, 2024, 2(1): 100031 DOI:10.1016/j.pscia.2023.100031

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

ZHM performed the literature review and analysis, drafted, revised, and improved the paper. The author has read and approved the final manuscript.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding

This research received no funding.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

All figures were created with BioRender.com.

References

[1]

S. Guo, et al., Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics, J. Nanobiotechnol. 19 (1) (2021) 1-21. https://doi.org/10.1186/s12951-021-00770-2.

[2]

S. Hua, Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors, Front. Pharmacol. 11 (2020) 524. https://doi.org/10.3389/fphar.2020.00524.

[3]

F. Liu, H. Shokrollahi, In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer, Int. J. Pharm. 485 (1-2) (2015) 152-159,. https://doi.org/10.1016/j.ijpharm.2015.03.008.

[4]

D. Liu, et al., Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation, Int. J. Nanomed. 10 (1) (2015) 6425-6434. https://doi.org/10.2147/IJN.S87143.

[5]

P. Karande, J.P. Trasatti, D. Chandra, Novel approaches for the delivery of biologics to the central nervous system, Novel Approaches and Strategies for Biologics, Vaccines, in: and Cancer Therapies, Academic Press, 2015, pp. 59-88. https://doi.org/10.1016/B978-0-12-416603-5.00004-3.

[6]

K. Palm, P. Stenberg, K. Luthman, P. Artursson, Polar molecular surface properties predict the intestinal absorption of drugs in humans, Pharm. Res. ( N. Y.) 14 (5) (1997) 568-571. https://doi.org/10.1023/A:1012188625088.

[7]

J.M. Anderson, Molecular structure of tight junctions and their role in epithelial transport, News Physiol. Sci. 16 (3) (2001) 126-130. https://doi.org/10.1152/physiologyonline.2001.16.3.126.

[8]

E.K. Anderberg, P. Artursson, Epithelial transport of drugs in cell culture. VIII: effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells, J. Pharmaceut. Sci. 82 (4) (1993) 392-398. https://doi.org/10.1002/jps.2600820412.

[9]

G. Volkheimer, Passage of particles through the wall of the gastrointestinal tract, Environ. Health Perspect. 9 (1974) 215-225. https://doi.org/10.1289/ehp.749215.

[10]

J.F. Hillyer, R.M. Albrecht, Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles, J. Pharmaceut. Sci. 90 (12) (2001) 1927-1936. https://doi.org/10.1002/jps.1143.

[11]

J. Heyder,Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery, Proc. Am. Thorac. Soc. 1 (4) (2004) 315-320. https://doi.org/10.1513/pats.200409-046TA.

[12]

F. Lavorini, M. Pistolesi, O.S. Usmani, Recent advances in capsule-based dry powder inhaler technology, Multidiscip. Respir. Med. 12 (1) (2017) 1-7. https://doi.org/10.1186/S40248-017-0092-5.

[13]

O.S. Usmani, et al., The topical study of inhaled drug (salbutamol) delivery in idiopathic pulmonary fibrosis, Respir. Res. 19 (1) (2018) 1-10. https://doi.org/10.1186/S12931-018-0732-0.

[14]

C. el Baou, et al., Effect of inhaled corticosteroid particle size on asthma efficacy and safety outcomes: a systematic literature review and meta-analysis, BMC Pulm. Med. 17 (1) (2017) 1-16. https://doi.org/10.1186/S12890-016-0348-4.

[15]

D. Chen, J. Liu, J. Wu, J.S. Suk, Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung, Expet Opin. Drug Deliv. 18 (5) (2021) 595. https://doi.org/10.1080/17425247.2021.1854222.

[16]

M.B. Murphrey, J.H. Miao, P.M. Zito, Histology, stratum corneum, StatPearls (Nov. 2021) [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK513299/. (Accessed 14 March 2022).

[17]

C.M. Lopes, J. Silva, M.E.C.D. Real Oliveira, M. Lúcio, in: Lipid-based colloidal carriers for topical application of antiviral drugs, Design of Nanostructures for Versatile Therapeutic Applications, William Andrew Publishing, 2018, pp. 565-622. https://doi.org/10.1016/B978-0-12-813667-6.00014-0.

[18]

M.E. Johnson, D. Blankschtein, R. Langer, Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism, J. Pharmaceut. Sci. 86 (10) (1997) 1162-1172. https://doi.org/10.1021/JS960198E.

[19]

M. Sala, R. Diab, A. Elaissari, H. Fessi, Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications, Int. J. Pharm. 535 (1-2) (2018) 1-17. https://doi.org/10.1016/j.ijpharm.2017.10.046.

[20]

Y. Zhai, G. Zhai, Advances in lipid-based colloid systems as drug carrier for topic delivery, J. Contr. Release 193 (2014) 90-99. https://doi.org/10.1016/j.jconrel.2014.05.054.

[21]

R.R. Hood, et al., Microfluidic-enabled liposomes elucidate size-dependent transdermal transport, PLoS One 9 (3) (2014) e92978. https://doi.org/10.1371/journal.pone.0092978.

[22]

J. Yokota, S. Kyotani,Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs, J. Chin. Med. Assoc. 81 (6) (2018) 511-519. https://doi.org/10.1016/j.jcma.2018.01.008.

[23]

C. Try, et al., Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models, Eur. J. Pharm. Biopharm. 100 (2016) 101-108. https://doi.org/10.1016/j.ejpb.2016.01.002.

[24]

J. Lademann, et al., Hair follicles as a target structure for nanoparticles, J Innov Opt Health Sci 8 (4) (2015). https://doi.org/10.1142/S1793545815300049.

[25]

A. Patzelt, et al., Selective follicular targeting by modification of the particle sizes, J. Contr. Release 150 (1) (2011) 45-48. https://doi.org/10.1016/j.jonrel.2010.11.015.

[26]

Z.M. Adib, S. Ghanbarzadeh, M. Kouhsoltani, A.Y. Khosroshahi, H. Hamishehkar, The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study, Adv. Pharmaceut. Bull. 6 (1) (2016) 31, https://doi.org/10.15171/apb.2016.006.

[27]

R. Daneman, A. Prat, The blood-brain barrier, Cold Spring Harbor Perspect. Biol. 7 (1) (2015). https://doi.org/10.1101/cshperspect.A020412.

[28]

M. de Bock, V. van Haver, R.E. Vandenbroucke, E. Decrock, N. Wang, L. Leybaert, Into rather unexplored terrain-transcellular transport across the blood-brain barrier, Glia 64 (7) (2016) 1097-1123. https://doi.org/10.1002/glia.22960.

[29]

S. Ohta, E. Kikuchi, A. Ishijima, T. Azuma, I. Sakuma, T. Ito, Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood-brain barrier opening, Sci. Rep. 10 (1) (2020) 1-13, 2020 10:1, https://doi.org/10.1038/s41598-020-75253-9.

[30]

H. Chen, E.E. Konofagou, The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure, J. Cerebr. Blood Flow Metabol. 34 (7) (2014) 1197. https://doi.org/10.1038/jcbfm.2014.71.

[31]

C. Li, et al., Protein nanoparticle-related osmotic pressure modifies nonselective permeability of the blood-brain barrier by increasing membrane fluidity, Int. J. Nanomed. 16 (2021) 1663. https://doi.org/10.2147/ijn.S291286.

[32]

S.I. Rapoport,10, Advances in Osmotic Opening of the Blood-Brain Barrier to Enhance CNS Chemotherapy, 10, 2005, pp. 1809-1818, https://doi.org/10.1517/13543784.10.10.1809.

[33]

V. Ceña, P. Játiva,13 Nanoparticle Crossing of Blood-Brain Barrier: a Road to New Therapeutic Approaches to Central Nervous System Diseases, 13, 2018, pp. 1513-1516. https://doi.org/10.2217/nnm-2018-0139.

[34]

O. Betzer, et al., The effect of nanoparticle size on the ability to cross the blood? brain barrier: an in vivo study, 12, 2017, pp. 1533-1546. https://doi.org/10.2217/nnm-2017-0022.

[35]

Q. Meng, et al., Influence of nanoparticle size on blood-brain barrier penetration and the accumulation of anti-seizure medicines in the brain, J. Mater. Chem. B 10 (2022) 271. https://doi.org/10.1039/d1tb02015c.

[36]

T.D. Brown, N. Habibi, D. Wu, J. Lahann, S. Mitragotri, Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier, ACS Biomater. Sci. Eng. 6 (9) (2020) 4916-4928. https://doi.org/10.1021/acsbiomaterials.0C00743.

[37]

F. Yuan, M. Leunig, D.A. Berk, R.K. Jain, Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in scid mice, Microvasc. Res. 45 (3) (1993) 269-289. https://doi.org/10.1006/mvre.1993.1024.

[38]

M.M. Bommana, S. Raut, in: Brain targeting of payload using mild magnetic field: site specific delivery, Nanostructures for the Engineering of Cells, Tissues and Organs:from Design to Applications, William Andrew Publishing, 2018, pp. 167-185. https://doi.org/10.1016/b978-0-12-813665-2.00005-3.

[39]

Y.R. Zhang, R. Lin, H.J. Li, W. ling He, J.Z. Du, J. Wang, Strategies to improve tumor penetration of nanomedicines through nanoparticle design, Wiley Interdiscip Rev Nanomed Nanobiotechnol 11 (1) (2019). https://doi.org/10.1002/wnan.1519.

[40]

S. Poh, V. Chelvam, P.S. Low, Comparison of nanoparticle penetration into solid tumors and sites of inflammation: studies using targeted and nontargeted liposomes, Nanomedicine 10 (9) (2015) 1439-1449. https://doi.org/10.2217/nnm.14.237.

[41]

H. Cabral, et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size, Nat. Nanotechnol. 6 (12) (2011) 815-823, 2011 6:12, https://doi.org/10.1038/nnano.2011.166.

[42]

L. Tang, et al., Investigating the optimal size of anticancer nanomedicine, Proc. Natl. Acad. Sci. U. S. A. 111 (43) (2014) 15344-15349. https://doi.org/10.1073/pnas.1411499111.

[43]

W. Yu, R. Liu, Y. Zhou, H. Gao, Size-tunable strategies for a tumor targeted drug delivery system, ACS Cent. Sci. 6 (2) (2020) 100. https://doi.org/10.1021/acscentsci.9B01139.

[44]

W. Yu, R. Liu, Y. Zhou, H. Gao, Size-tunable strategies for a tumor targeted drug delivery system, ACS Cent. Sci. 6 (2) (2020) 100-116. https://doi.org/10.1021/acscentsci.9B01139.

[45]

X. Huang, Y. Ma, Y. Li, F. Han, W. Lin, Targeted drug delivery systems for kidney diseases, Front. Bioeng. Biotechnol. 9 (2021) 409. https://doi.org/10.3389/fbioe.2021.683247.

[46]

C.F. Adhipandito, S.H. Cheung, Y.H. Lin, S.H. Wu, Atypical renal clearance of nanoparticles larger than the kidney filtration threshold, Int. J. Mol. Sci. 22 (20) (2021) 11182. https://doi.org/10.3390/ijms222011182.

[47]

J.B. Warner, S.C. Guenthner, J.E. Hardesty, C.J. McClain, D.R. Warner, I.A. Kirpich, Liver-specific drug delivery platforms: applications for the treatment of alcoholassociated liver disease, World J. Gastroenterol. 28 (36) (2022) 5280. https://doi.org/10.3748/wjg.V28.I36.5280.

[48]

M.F. Bachmann, G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns, Nat. Rev. Immunol. 10 (11) (2010) 787-796. https://doi.org/10.1038/nri2868.

[49]

F. Liang, et al., Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques, Mol. Ther. 25 (12) (2017) 2635-2647. https://doi.org/10.1016/j.ymthe.2017.08.006.

[50]

K.J. Hassett, et al., Impact of lipid nanoparticle size on mRNA vaccine immunogenicity, J. Contr. Release 335 (2021) 237-246. https://doi.org/10.1016/j.conrel.2021.05.021.

[51]

K.J. Hassett, et al., Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines, Mol. Ther. Nucleic Acids 15 (2019) 1-11. https://doi.org/10.1016/j.omtn.2019.01.013.

[52]

S.D. Xiang, et al., Pathogen recognition and development of particulate vaccines: does size matter? Methods 40 (1) (2006) 1-9. https://doi.org/10.1016/j.ymeth.2006.05.016.

[53]

E. Knyazev, S. Nersisyan, A. Tonevitsky, Endocytosis and transcytosis of SARS-CoV- 2 across the intestinal epithelium and other tissue barriers, Front. Immunol. 12 (2021) 3639. https://doi.org/10.3389/fimmu.2021.636966.

[54]

M.v. Baranov, M. Kumar, S. Sacanna, S. Thutupalli, G. van den Bogaart,Modulation of immune responses by particle size and shape, Front. Immunol. 11 (2021). https://doi.org/10.3389/fimmu.2020.607945.

[55]

M. Haer, et al., PAT solutions to monitor adsorption of Tetanus Toxoid with aluminum adjuvants, J. Pharm. Biomed. Anal. 198 (2021) 114013. https://doi.org/10.1016/j.jpba.2021.114013.

[56]

Z. Wu, T. Li, Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: challenges and future perspectives, Pharm. Res. ( N. Y.) 38 (3) (2021) 1. https://doi.org/10.1007/s11095-021-03015-x.

[57]

M. Maugeri, et al., Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells, Nat. Commun. 10 (1) (2019) 1-15. https://doi.org/10.1038/s41467-019-12275-6.

[58]

A.C. Amrite, H.F. Edelhauser, S.R. Singh, U.B. Kompella, Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration, Mol. Vis. 14 (2008) 150.

[59]

A.C. Amrite, U.B. Kompella, Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration, J. Pharm. Pharmacol. 57 (12) (2005) 1555-1563. https://doi.org/10.1211/jpp.57.12.0005.

[60]

S.R. Patel, A.S.P. Lin, H.F. Edelhauser, M.R. Prausnitz, Suprachoroidal drug delivery to the back of the eye using hollow microneedles, Pharm. Res. ( N. Y.) 28 (1) (2011) 166-176. https://doi.org/10.1007/s11095-010-0271-y.

[61]

A. Edwards, M.R. Prausnitz, Fiber matrix model of sclera and corneal stroma for drug delivery to the eye, AIChE J 44 (1) (1998) 214-225. https://doi.org/10.1002/aic.690440123.

[62]

R. Herrero-Vanrell, I. Bravo-Osuna, V. Andrés-Guerrero, M. Vicario-de-la-Torre, I.T. Molina-Martínez, The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies, Prog. Retin. Eye Res. 42 (2014) 27-43. https://doi.org/10.1016/j.preteyeres.2014.04.002.

[63]

E. Toropainen, et al., Biopharmaceutics of topical ophthalmic suspensions: importance of viscosity and particle size in ocular absorption of indomethacin, Pharmaceutics 13 (4) (2021). https://doi.org/10.3390/pharmaceutics13040452.

[64]

M. Rathananand, D. Kumar, A. Shirwaikar, R. Kumar, D. Sampath Kumar, R. Prasad, Preparation of mucoadhesive microspheres for nasal delivery by spray drying, Indian J. Pharmaceut. Sci. 69 (5) (2007) 651. https://doi.org/10.4103/0250-474x.38470.

[65]

A. Rygg, M. Hindle, P.W. Longest, Absorption and clearance of pharmaceutical aerosols in the human nose: effects of nasal spray suspension particle size and properties, Pharm. Res. ( N. Y.) 33 (4) (2016) 909-921. https://doi.org/10.1007/s11095-015-1837-5.

[66]

P. Artursson, T. Lindmark, S.S. Davis, L. Illum, Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2), Pharm. Res. ( N. Y.) 11 (9) (1994) 1358-1361. https://doi.org/10.1023/a:1018967116988.

[67]

M. Abdel Mouez, N.M. Zaki, S. Mansour, A.S. Geneidi, Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres, Eur. J. Pharmaceut. Sci. 51 (1) (2014) 59-66. https://doi.org/10.1016/j.ejps.2013.08.029.

[68]

S.N. Bowe, A. Jacob, Round window perfusion dynamics: implications for intracochlear therapy, Curr. Opin. Otolaryngol. Head Neck Surg. 18 (5) (2010) 377-385. https://doi.org/10.1097/moo.0B013E32833D30F0.

[69]

J. Zou, et al., Size-dependent passage of liposome nanocarriers with preserved posttransport integrity across the middle-inner ear barriers in rats, Otol. Neurotol. 33 (4) (Jun. 2012) 666-673. https://.org/10.1097/MAO.0B013E318254590E.

[70]

S.Y. Lee, et al., Contralateral spreading of substances following intratympanic nanoparticle-conjugated gentamicin injection in a rat model, Sci. Rep. 10 (1) (2020) 1-9. https://doi.org/10.1038/s41598-020-75725-y.

[71]

P. Videhult Pierre, et al., Middle ear administration of a particulate chitosan gel in an in vivo model of cisplatin ototoxicity, Front. Cell. Neurosci. 13 (2019) 268. https://doi.org/10.3389/fncel.2019.00268.

AI Summary AI Mindmap
PDF (2507KB)

501

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/