Immune mechanisms and novel therapies for idiopathic pulmonary fibrosis

Dongyang Gao , Wenli Gao , Zhiguang Zhai , Wenxiang Zhu

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100030

PDF (1054KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100030 DOI: 10.1016/j.pscia.2023.100030
Review Article
research-article

Immune mechanisms and novel therapies for idiopathic pulmonary fibrosis

Author information +
History +
PDF (1054KB)

Abstract

Idiopathic pulmonary fibrosis (IPF), a progressive lung disease characterized by irreversible lung dysfunction caused by fibroblast proliferation and excessive collagen deposition, is the result of persistent chronic inflammation of the lung parenchyma. Although the pathogenesis is not fully understood, the role of immune mechanisms such as innate immune response, adaptive immunity and immune regulation, and cytokines in the pathophysiological mechanism of pulmonary fibrosis have been gradually recognized. There are currently limited drugs available to treat IPF, and long-term use of these drugs may have many adverse effects. With the elucidation of the underlying immunological pathogenesis, the development of more valuable drugs targeting the immune system becomes possible. This review introduces the immunological pathogenesis of pulmonary fibrosis and the emerging drugs targeting the immune system in recent years, aiming to provide insights into the mechanism and treatment direction of pulmonary fibrosis.

Keywords

Pulmonary fibrosis / Immune mechanisms / Novel treatments / Therapeutic targets

Cite this article

Download citation ▾
Dongyang Gao, Wenli Gao, Zhiguang Zhai, Wenxiang Zhu. Immune mechanisms and novel therapies for idiopathic pulmonary fibrosis. Pharmaceutical Science Advances, 2024, 2(1): 100030 DOI:10.1016/j.pscia.2023.100030

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhiguang Zhai and Wenxiang Zhu conceived and designed the work. Dongyang Gao and Wenli Gao were responsible for writing. Wenxiang Zhu was in charge of checking and revision. All the figures in the article were made by Dongyang Gao. All the authors have read and approved the final manuscript.

Data availability

No data was used for the research described in the article.

Ethics approval

Not applicable.

Funding information

This study was supported by the Basic Research Project of the Science, Technology, and Innovation Commission of Shenzhen Municipality (JCYJ20210324135410028).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

All the authors thank Miss Dou for her contribution in the production of the picture.

References

[1]

D. Chanda, E. Otoupalova, S.R. Smith, T. Volckaert, S.P. De Langhe, V.J. Thannickal, Developmental pathways in the pathogenesis of lung fibrosis, Mol. Aspect. Med. 65 (2019) 56-69. https://doi.org/10.1016/j.mam.2018.08.004.

[2]

M. Wijsenbeek, A. Suzuki, T.M. Maher, Interstitial lung diseases, Lancet 400 (2022) 769-786, 10354, https://doi.org/10.1016/S0140-6736(22)01052-2.

[3]

F. Calabrese, F. Lunardi, V. Tauro, F. Pezzuto, F. Fortarezza, L. Vedovelli, E. Faccioli, E. Balestro, M. Schiavon, G. Esposito, S.E. Vuljan, C. Giraudo, D. Gregori, F. Rea, P. Spagnolo, RNA sequencing of epithelial cell/fibroblastic foci sandwich in idiopathic pulmonary fibrosis: new insights on the signaling pathway, Int. J. Mol. Sci. 23 (6) (2022). https://doi.org/10.3390/ijms23063323.

[4]

A. Carleo, E. Bargagli, C. Landi, D. Bennett, L. Bianchi, A. Gagliardi, C. Carnemolla, M.G. Perari, G. Cillis, A. Armini, L. Bini, P. Rottoli, Comparative proteomic analysis of bronchoalveolar lavage of familial and sporadic cases of idiopathic pulmonary fibrosis, J. Breath Res. 10 (2) (2016) 026007. https://doi.org/10.1088/1752-7155/10/2/026007.

[5]

J.C. Hewlett, J.A. Kropski, T.S. Blackwell, Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets, Matrix Biol. 71-72 (2018) 112-127. https://doi.org/10.1016/j.matbio.2018.03.021.

[6]

W. Qian, X. Cai, Q. Qian, X. Zhang, Identification and validation of potential biomarkers and pathways for idiopathic pulmonary fibrosis by comprehensive bioinformatics analysis, BioMed Res. Int. 2021 (2021) 5545312. https://doi.org/10.1155/2021/5545312.

[7]

R.N. Mustafin, Molecular genetics of idiopathic pulmonary fibrosis, Vavilovskii Zhurnal Genet Selektsii 26 (3) (2022) 308-318. https://doi.org/10.18699/VJGB-22-37.

[8]

A. Diamantopoulos, E. Wright, K. Vlahopoulou, L. Cornic, N. Schoof, T.M. Maher, The burden of illness of idiopathic pulmonary fibrosis: a comprehensive evidence review, Pharmacoeconomics 36 (7) (2018) 779-807. https://doi.org/10.1007/s40273-018-0631-8.

[9]

J.H. Lee, H.J. Park, S. Kim, Y.-J. Kim, H.C. Kim, Epidemiology and comorbidities in idiopathic pulmonary fibrosis: a nationwide cohort study, BMC Pulm. Med. 23 (1) (2023) 54. https://doi.org/10.1186/s12890-023-02340-8.

[10]

S. Saito, B. Deskin, M. Rehan, S. Yadav, Y. Matsunaga, J.A. Lasky, V.J. Thannickal, Novel mediators of idiopathic pulmonary fibrosis, Clin Sci (Lond) 136 (16) (2022) 1229-1240. https://doi.org/10.1042/CS20210878.

[11]

A. Chakraborty, M. Mastalerz, M. Ansari, H.B. Schiller, C.A. Staab-Weijnitz, Emerging roles of airway epithelial cells in idiopathic pulmonary fibrosis, Cells 11 (6) (2022). https://doi.org/10.3390/cells11061050.

[12]

P.J. Wolters, T.S. Blackwell, O. Eickelberg, J.E. Loyd, N. Kaminski, G. Jenkins, T.M. Maher, M. Molina-Molina, P.W. Noble, G. Raghu, L. Richeldi, M.I. Schwarz, M. Selman, W.A. Wuyts, D.A. Schwartz, Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? Lancet Respir. Med. 6 (2) (2018) 154-160. https://doi.org/10.1016/S2213-2600(18)30007-9.

[13]

F.J. Martinez, H.R. Collard, A. Pardo, G. Raghu, L. Richeldi, M. Selman, J.J. Swigris, H. Taniguchi, A.U. Wells, Idiopathic pulmonary fibrosis, Nat. Rev. Dis. Prim. (3) (2017) 17074. https://doi.org/10.1038/nrdp.2017.74.

[14]

B.J. Moss, S.W. Ryter, I.O. Rosas, Pathogenic mechanisms underlying idiopathic pulmonary fibrosis, Ann. Rev. Pathol. 17 (2022) 515-546. https://doi.org/10.1146/annurev-pathol-042320-030240.

[15]

S. Ohkouchi, M. Ono, M. Kobayashi, T. Hirano, Y. Tojo, S. Hisata, M. Ichinose, T. Irokawa, H. Ogawa, H. Kurosawa, Myriad functions of stanniocalcin-1 (STC1) cover multiple therapeutic targets in the complicated pathogenesis of idiopathic pulmonary fibrosis (IPF), Clin. Med. Insights Circulatory, Respir. Pulm. Med. 9 (Suppl 1) (2015) 91-96. https://doi.org/10.4137/CCRPM.S23285.

[16]

L. Pan, Y. Hu, C. Qian, Y. Yao, S. Wang, W. Shi, T. Xu, RNF2 mediates pulmonary fibroblasts activation and proliferation by regulating mTOR and p16-CDK4-Rb1 signaling pathway, Inflamm. Res. (2022). https://doi.org/10.1007/s00011-022-01617-8.

[17]

T.H. Barker, M.M. Dysart, A.C. Brown, A.M. Douglas, V.F. Fiore, A.G. Russell, Synergistic effects of particulate matter and substrate stiffness on epithelial-tomesenchymal transition, Res. Rep. Health Eff. Inst. (182) (2014) 3-41.

[18]

R.L. Heise, V. Stober, C. Cheluvaraju, J.W. Hollingsworth, S. Garantziotis, Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity, J. Biol. Chem. 286 (20) (2011) 17435-17444. https://doi.org/10.1074/jbc.M110.137273.

[19]

X. Sang, Y. Wang, Z. Xue, D. Qi, G. Fan, F. Tian, Y. Zhu, J. Yang, Macrophagetargeted lung delivery of dexamethasone improves pulmonary fibrosis therapy via regulating the immune microenvironment, Front. Immunol. 12 (2021) 613907. https://doi.org/10.3389/fimmu.2021.613907.

[20]

S. Preisend€orfer, Y. Ishikawa, E. Hennen, S. Winklmeier, J.C. Schupp, L. Knüppel, I.E. Fernandez, L. Binzenh€ofer, A. Flatley, B.M. Juan-Guardela, C. Ruppert, A. Guenther, M. Frankenberger, R.A. Hatz, N. Kneidinger, J. Behr, R. Feederle, A. Schepers, A. Hilgendorff, N. Kaminski, E. Meinl, H.P. B€achinger, O. Eickelberg, C.A. Staab-Weijnitz, FK506-Binding protein 11 is a novel plasma cell-specific antibody folding catalyst with increased expression in idiopathic pulmonary fibrosis, Cells 11 (8) (2022). https://doi.org/10.3390/cells11081341.

[21]

J. Reyes-García, L.M. Monta-no, A. Carbajal-García, Y.X. Wang, Sex hormones and lung inflammation, Adv. Exp. Med. Biol. 1304 (2021) 259-321. https://doi.org/10.1007/978-3-030-68748-9_15.

[22]

T. Planté-Bordeneuve, C. Pilette, A. Froidure, The epithelial-immune crosstalk in pulmonary fibrosis, Front. Immunol. 12 (2021) 631235. https://doi.org/10.3389/fimmu.2021.631235.

[23]

H.H. Walford, T.A. Doherty, STAT6 and lung inflammation, JAK-STAT 2 (4) (2013) e25301. https://doi.org/10.4161/jkst.25301.

[24]

L. Florez-Sampedro, S. Song, B.N. Melgert, The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung, Regeneration (Oxf) 5 (1) (2018) 3-25. https://doi.org/10.1002/reg2.97.

[25]

L. Richeldi, H.R. Collard, M.G. Jones, Idiopathic pulmonary fibrosis, Lancet 389 (2017) 1941-1952, 10082, https://doi.org/10.1016/S0140-6736(11)60052-4.

[26]

D. Yu, Y. Xiang, T. Gou, R. Tong, C. Xu, L. Chen, L. Zhong, J. Shi, New therapeutic approaches against pulmonary fibrosis, Bioorg. Chem. 138 (2023) 106592. https://doi.org/10.1016/j.bioorg.2023.106592.

[27]

Y.-S. Zhang, B. Tu, K. Song, L.-C. Lin, Z.-Y. Liu, D. Lu, Q. Chen, H. Tao, Epigenetic hallmarks in pulmonary fibrosis: new advances and perspectives, Cell. Signal. 110 (2023) 110842. https://doi.org/10.1016/j.cellsig.2023.110842.

[28]

I.A. Savin, M.A. Zenkova, A.V. Sen’kova, Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches, Int. J. Mol. Sci. 23 (23) (2022). https://doi.org/10.3390/ijms232314959.

[29]

D.J. Schrier, S.H. Phan, B.M. McGarry, The effects of the nude (nu/nu) mutation on bleomycin-induced pulmonary fibrosis. A biochemical evaluation, Am. Rev. Respir. Dis. 127 (5) (1983) 614-617. https://doi.org/10.1164/arrd.1983.127.5.614.

[30]

W.A. Wuyts, C. Agostini, K.M. Antoniou, D. Bouros, R.C. Chambers, V. Cottin, J.J. Egan, B.N. Lambrecht, R. Lories, H. Parfrey, A. Prasse, C. Robalo-Cordeiro, E. Verbeken, J.A. Verschakelen, A.U. Wells, G.M. Verleden, The pathogenesis of pulmonary fibrosis: a moving target, Eur. Respir. J. 41 (5) (2013) 1207-1218. https://doi.org/10.1183/09031936.00073012.

[31]

S. Sun, C. Huang, D. Leng, C. Chen, T. Zhang, K.C. Lei, X.D. Zhang, Gene fusion of IL7 involved in the regulation of idiopathic pulmonary fibrosis, Ther. Adv. Respir. Dis. 15 (2021), 1753466621995045, https://doi.org/10.1177/1753466621995045.

[32]

S. Tajima, M. Bando, S. Ohno, Y. Sugiyama, K. Oshikawa, S. Tominaga, K. Itoh, T. Takada, E. Suzuki, F. Gejyo, ST 2 gene induced by type 2 helper T cell (Th2) and proinflammatory cytokine stimuli may modulate lung injury and fibrosis, Exp. Lung Res. 33 (2) (2007) 81-97. http://dx.doi.org/10.1080/01902140701198583.

[33]

L. Richeldi, H.R. Collard, M.G. Jones, Idiopathic pulmonary fibrosis, Lancet 389 (10082) (2017) 1941-1952. https://doi.org/10.1016/S0140-6736(11)60052-4.

[34]

M. Wijsenbeek, A. Suzuki, T.M. Maher, Interstitial lung diseases, Lancet 400 (10354) (2022) 769-786. https://doi.org/10.1016/S0140-6736(22)01052-2.

[35]

V. Velagacherla, C.H. Mehta, Y. Nayak, U.Y. Nayak, Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis, Life Sci. 291 (2022) 120283. https://doi.org/10.1016/j.lfs.2021.120283.

[36]

K.C. Meyer, Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis, Expet Rev. Respir. Med. 11 (5) (2017) 343-359. https://doi.org/10.1080/17476348.2017.1312346.

[37]

Y. Gu, T. Lawrence, R. Mohamed, Y. Liang, B.H. Yahaya, The emerging roles of interstitial macrophages in pulmonary fibrosis: a perspective from scRNA-seq analyses, Front. Immunol. 13 (2022) 923235. https://doi.org/10.3389/fimmu.2022.923235.

[38]

T. Ogawa, S. Shichino, S. Ueha, K. Bando, K. Matsushima, Profibrotic properties of C1q(+) interstitial macrophages in silica-induced pulmonary fibrosis in mice, Biochem. Biophys. Res. Commun. 599 (2022) 113-119. https://doi.org/10.1016/j.bbrc.2022.02.037.

[39]

T. Ogawa, S. Shichino, S. Ueha, K. Matsushima, Macrophages in lung fibrosis, Int. Immunol. 33 (12) (2021) 665-671. https://doi.org/10.1093/intimm/dxab040.

[40]

L. Tamó, C. Simillion, Y. Hibaoui, A. Feki, M. Gugger, A. Prasse, B. J€ager, T. Goldmann, T. Geiser, A. Gazdhar, Gene network analysis of interstitial macrophages after treatment with induced pluripotent stem cells secretome (iPSCcm) in the bleomycin injured rat lung, Stem Cell Rev. Rep. 14 (3) (2018) 412-424. https://doi.org/10.1007/s12015-017-9790-9.

[41]

C. He, A.B. Carter, The metabolic prospective and redox regulation of macrophage polarization, J. Clin. Cell. Immunol. 6 (6) (2015). https://doi.org/10.4172/2155-9899.1000371.

[42]

H. Cui, S. Banerjee, S. Guo, N. Xie, J. Ge, D. Jiang, M. Z€ornig, V.J. Thannickal, G. Liu, Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury, JCI Insight 4 (4) (2019). https://doi.org/10.1172/jci.insight.124522.

[43]

Z. Feng, J. Zhou, Y. Liu, R. Xia, Q. Li, L. Yan, Q. Chen, X. Chen, Y. Jiang, G. Chao, M. Wang, G. Zhou, Y. Zhang, Y. Wang, H. Xia, Epithelium- and endotheliumderived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response, Cell Death Differ. 28 (7) (2021) 2238-2256. https://doi.org/10.1038/s41418-021-00750-x.

[44]

F. Puttur, L.G. Gregory, C.M. Lloyd, Airway macrophages as the guardians of tissue repair in the lung, Immunol. Cell Biol. 97 (3) (2019) 246-257. https://doi.org/10.1111/imcb.12235.

[45]

T. Chen, Z. Zhang, D. Weng, L. Lu, X. Wang, M. Xing, H. Qiu, M. Zhao, L. Shen, Y. Zhou, J. Chang, H.P. Li, Ion therapy of pulmonary fibrosis by inhalation of ionic solution derived from silicate bioceramics, Bioact. Mater. 6 (10) (2021) 3194-3206. https://doi.org/10.1016/j.bioactmat.2021.02.013.

[46]

Z.H. Cai, Y.G. Tian, J.Z. Li, P. Zhao, J.S. Li, X. Mei, Y.P. Bai, Peimine ameliorates pulmonary fibrosis via the inhibition of M2-type macrophage polarization through the suppression of P38/Akt/STAT6 signals, Biosci. Rep. 42 (10) (2022). https://doi.org/10.1042/BSR20220986.

[47]

Y. Nie, L. Sun, Y. Wu, Y. Yang, J. Wang, H. He, Y. Hu, Y. Chang, Q. Liang, J. Zhu, R.D. Ye, J.W. Christman, F. Qian, AKT 2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation, J. Immunol. 198 (11) (2017) 4470-4480. https://doi.org/10.4049/jimmunol.1601503.

[48]

C. Goda, D. Balli, M. Black, D. Milewski, T. Le, V. Ustiyan, X. Ren, V.V. Kalinichenko, T.V. Kalin, Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway, PLoS Genet 16 (4) (2020) e1008692. https://doi.org/10.1371/journal.pgen.1008692.

[49]

Y. Wang, Q. Kuai, F. Gao, Y. Wang, M. He, H. Zhou, G. Han, X. Jiang, S. Ren, Q. Yu, Overexpression of TIM-3 in macrophages aggravates pathogenesis of pulmonary fibrosis in mice, Am. J. Respir. Cell Mol. Biol. 61 (6) (2019) 727-736. https://doi.org/10.1165/rcmb.2019-0070OC.

[50]

S.A. Gharib, L.K. Johnston, I. Huizar, T.P. Birkland, J. Hanson, Y. Wang, W.C. Parks, A.M. Manicone, MMP 28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis, J. Leukoc. Biol. 95 (1) (2014) 9-18. https://doi.org/10.1189/jlb.1112587.

[51]

W. Qin, C.A. Spek, B.P. Scicluna, T. van der Poll, J. Duitman, Myeloid DNA methyltransferase3b deficiency aggravates pulmonary fibrosis by enhancing profibrotic macrophage activation, Respir. Res. 23 (1) (2022) 162. https://doi.o rg/10.1186/s12931-022-02088-5.

[52]

C.D. Richards, Innate immune cytokines, fibroblast phenotypes, and regulation of extracellular matrix in lung, J. Interferon Cytokine Res. 37 (2) (2017) 52-61. https://doi.org/10.1089/jir.2016.0112.

[53]

Y. Zhang, J. Tang, Z. Tian, J.C. van Velkinburgh, J. Song, Y. Wu, B. Ni, Innate lymphoid cells: a promising new regulator in fibrotic diseases, Int. Rev. Immunol. 35 (5) (2016) 399-414. https://doi.org/10.3109/08830185.2015.1068304.

[54]

H. Cheng, C. Jin, J. Wu, S. Zhu, Y.J. Liu, J. Chen, Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung, Protein Cell 8 (12) (2017) 878-895. https://doi.org/10.1007/s13238-017-0399-1.

[55]

L.L. Mi, Y. Zhu, H.Y. Lu, A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases, Mol. Med. Rep. 23 (6) (2021) 1-11. https://doi.org/10.3892/mmr.2021.12042.

[56]

J. Zhang, J. Qiu, W. Zhou, J. Cao, X. Hu, W. Mi, B. Su, B. He, J. Qiu, L. Shen, Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity, Nat. Immunol. 23 (2) (2022) 237-250. https://doi.org/10.1038/s41590-021-01097-8.

[57]

A. Froidure, B. Crestani, Regulation of immune cells in lung fibrosis: the reign of regnase-1? Eur. Respir. J. 57 (3) (2021). https://doi.org/10.1183/13993003.04029-2020.

[58]

T. Uehata, O. Takeuchi, Post-transcriptional regulation of immunological responses by Regnase-1-related RNases, Int. Immunol. 33 (12) (2021) 859-865. https://doi.org/10.1093/intimm/dxab048.

[59]

Y. Nakatsuka, A. Yaku, T. Handa, A. Vandenbon, Y. Hikichi, Y. Motomura, A. Sato, M. Yoshinaga, K. Tanizawa, K. Watanabe, T. Hirai, K. Chin, Y. Suzuki, T. Uehata, T. Mino, T. Tsujimura, K. Moro, O. Takeuchi, Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1, Eur. Respir. J. 57 (3) (2021). https://doi/org/10.1183/13993003.00018-2020.

[60]

G. Arthur, P. Bradding, New developments in mast cell biology: clinical implications, Chest 150 (3) (2016) 680-693. https://doi.org/10.1016/j.chest.2016.06.009.

[61]

E.P. Moiseeva, K.M. Roach, M.L. Leyland, P. Bradding, CADM1 is a key receptor mediating human mast cell adhesion to human lung fibroblasts and airway smooth muscle cells, PLoS One 8 (4) (2013) e61579. https://doi.org/10.1371/journal.pone.0061579.

[62]

D. Schnoegl, M. Hochgerner, D. Gotthardt, L.M. Marsh, Fra-2 is a dominant negative regulator of natural killer cell development, Front. Immunol. 13 (2022) 909270. https://doi.org/10.3389/fimmu.2022.909270.

[63]

H.Y. Nam, E.K. Ahn, H.J. Kim, Y. Lim, C.B. Lee, K.Y. Lee, V. Vallyathan, Diesel exhaust particles increase IL-1beta-induced human beta-defensin expression via NF-kappaB-mediated pathway in human lung epithelial cells, Part. Fibre Toxicol. 3 (9) (2006). https://doi.org/10.1186/1743-8977-3-9.

[64]

L.A. Stevens, R.L. Levine, B.R. Gochuico, J. Moss,ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine, Proc. Natl. Acad. Sci. 106 (47) (2009) 19796-19800. https://doi.org/10.1073/pnas.0910633106.

[65]

H. Mukae, H. Ishimoto, S. Yanagi, H. Ishii, S. Nakayama, J. Ashitani, M. Nakazato, S. Kohno,Elevated BALF concentrations of alpha- and beta-defensins in patients with pulmonary alveolar proteinosis, Respir. Med. 101 (4) (2007) 715-721. https://doi.org/10.1016/j.rmed.2006.08.018

[66]

S. Yoshioka, H. Mukae, H. Ishii, T. Kakugawa, H. Ishimoto, N. Sakamoto, T. Fujii, Y. Urata, T. Kondo, H. Kubota, K. Nagata, S. Kohno, Alpha-defensin enhances expression of HSP47 and collagen-1 in human lung fibroblasts, Life Sci. 80 (20) (2007) 1839-1845. https://doi.org/10.1016/j.lfs.2007.02.014.

[67]

H.Z. Yang, J.P. Wang, S. Mi, H.Z. Liu, B. Cui, H.M. Yan, J. Yan, Z. Li, H. Liu, F. Hua, W. Lu, Z.W. Hu, TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury, Am. J. Pathol. 180 (1) (2012) 275-292. https://doi.org/10.1016/j.ajpath.2011.09.019.

[68]

M. Plesa, M. Gaudet, A. Mogas, N. Jalaleddine, A. Halayko, S. Al Heialy, Q. Hamid, Vitamin D3 attenuates viral-induced inflammation and fibrotic responses in bronchial smooth muscle cells, Front. Immunol. 12 (2021) 715848. https://doi. org/10.3389/fimmu.2021.715848.

[69]

G. dos Santos, M.A. Kutuzov, K.M. Ridge, The inflammasome in lung diseases, Am. J. Physiol. Lung Cell Mol. Physiol. 303 (8) (2012) L627-L633. https://doi.org/10.1152/ajplung.00225.2012.

[70]

C.M. Artlett, S. Sassi-Gaha, J.L. Rieger, A.C. Boesteanu, C.A. Feghali-Bostwick, P.D. Katsikis, The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis, Arthritis Rheum. 63 (11) (2011) 3563-3574. https://doi.org/10.1002/art.30568.

[71]

H. Liu, C. Jakubzick, A.R. Osterburg, R.L. Nelson, N. Gupta, F.X. McCormack, M.T. Borchers, Dendritic cell trafficking and function in rare lung diseases, Am. J. Respir. Cell Mol. Biol. 57 (4) (2017) 393-402. https://doi.org/10.1165/rcmb.2017-0051PS.

[72]

J. Marchal-Sommé, Y. Uzunhan, S. Marchand-Adam, M. Kambouchner, D. Valeyre, B. Crestani, P. Soler, Dendritic cells accumulate in human fibrotic interstitial lung disease, Am. J. Respir. Crit. Care Med. 176 (10) (2007) 1007-1014. https://doi.org/10.1164/rccm.200609-1347OC.

[73]

K. Chakraborty, S. Chatterjee, A. Bhattacharyya, Modulation of CD11ct lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis, Cell Biol. Int. 41 (9) (2017) 991-1000. https://doi.org/10.1002/cbin.10800.

[74]

C.A. Beamer, A. Holian, Antigen-presenting cell population dynamics during murine silicosis, Am. J. Respir. Cell Mol. Biol. 37 (6) (2007) 729-738. https://doi.org/10.1165/rcmb.2007-0099OC.

[75]

M.K. Cathcart, L.I. Emdur, K. Ahtiala-Stewart, M. Ahmad, Excessive helper T-cell function in patients with idiopathic pulmonary fibrosis: correlation with disease activity, Clin. Immunol. Immunopathol. 43 (3) (1987) 382-394. https://doi.org/10.1016/0090-1229(87)90148-6.

[76]

M. Zhang, S.T. Zhang, Cells in fibrosis and fibrotic diseases, Front. Immunol. 11 (2020) 1142. https://doi.org/10.3389/fimmu.2020.01142.

[77]

A.C. Ucero, L. Bakiri, B. Roediger, M. Suzuki, M. Jimenez, P. Mandal, P. Braghetta, P. Bonaldo, L. Paz-Ares, C. Fustero-Torre, P. Ximenez-Embun, A.I. Hernandez, D. Megias, E.F. Wagner, Fra-2-expressing macrophages promote lung fibrosis in mice, J. Clin. Invest. 129 (8) (2019) 3293-3309. https://doi.org/10.1172/JCI125366.

[78]

T.Y. Brodeur, T.E. Robidoux, J.S. Weinstein, J. Craft, S.L. Swain, A. Marshak- Rothstein, IL-21 promotes pulmonary fibrosis through the induction of profibrotic CD8t T cells, J. Immunol. 195 (11) (2015) 5251-5260. https://doi.org/10.4049/jimmunol.1500777.

[79]

F. Huaux, C. Lardot, M. Arras, M. Delos, M.C. Many, J.P. Coutelier, J.P. Buchet, J.C. Renauld, D. Lison, Lung fibrosis induced by silica particles in NMRI mice is associated with an upregulation of the p40 subunit of interleukin-12 and Th-2 manifestations, Am. J. Respir. Cell Mol. Biol. 20 (4) (1999) 561-572. https://doi.org/10.1165/ajrcmb.20.4.3342.

[80]

J. Dong, Q. Ma, In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes, Arch. Toxicol. 90 (9) (2016) 2231-2248. https://doi.org/10.1007/s00204-016-1711-1.

[81]

T. Okazaki, A. Nakao, H. Nakano, F. Takahashi, K. Takahashi, O. Shimozato, K. Takeda, H. Yagita, K. Okumura, Impairment of bleomycin-induced lung fibrosis in CD28-deficient mice, J. Immunol. 167 (4) (2001) 1977-1981. https://doi.org/10.4049/jimmunol.167.4.1977.

[82]

S.R. Gilani, L.J. Vuga, K.O. Lindell, K.F. Gibson, J. Xue, N. Kaminski, V.G. Valentine, E.K. Lindsay, M.P. George, C. Steele, S.R. Duncan, CD 28 downregulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis, PLoS One 5 (1) (2010) e8959. https://doi.org/10.1371/journal.pone.0008959.

[83]

N. Zhang, X. Li, J. Wang, J. Wang, N. Li, Y. Wei, H. Tian, Y. Ji, Galectin-9 regulates follicular helper T cells to inhibit humoral autoimmunity-induced pulmonary fibrosis, Biochem. Biophys. Res. Commun. 534 (2021) 99-106. https://doi.org/10.1016/j.bbrc.2020.11.097.

[84]

S.L. Collins, Y. Chan-Li, M. Oh, C.L. Vigeland, N. Limjunyawong, W. Mitzner, J.D. Powell, M.R. Horton, Vaccinia vaccine-based immunotherapy arrests and reverses established pulmonary fibrosis, JCI Insight 1 (4) (2016) e83116. https://doi.org/10.1172/jci.insight.83116.

[85]

P. Zabel, Pathogenesis of interstitial pulmonary changes with collagen diseases- therapeutic implications, Immun. Infekt. 23 (3) (1995) 97-106.

[86]

G. Przybylski, J. Wielikdzień, P. Kopiński,Mechanisms of programmed cell death of effector T lymphocytes, Postepy Hig. Med. Dosw. 67 (2013) 1374-1390. https://doi.org/10.5604/17322693.1085092.

[87]

F. Huaux, Interpreting immunoregulation in lung fibrosis: a new branch of the immune model, Front. Immunol. 12 (2021) 690375. https://doi.org/10.3389/fimmu.2021.690375.

[88]

C. van Geffen, A. Deißler, M. Quante, H. Renz, D. Hartl, S. Kolahian, Regulatory immune cells in idiopathic pulmonary fibrosis: friends or foes? Front. Immunol. 12 (2021) 663203. https://doi.org/10.3389/fimmu.2021.663203.

[89]

F. Liu, J. Liu, D. Weng, Y. Chen, L. Song, Q. He, J. Chen, CD4tCD25tFoxp3t regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice, PLoS One 5 (11) (2010) e15404. https://doi.org/10.1371/journal.pone.0015404.

[90]

F. Liu, W. Dai, C. Li, X. Lu, Y. Chen, D. Weng, J. Chen, Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silicainduced lung inflammation and fibrosis, Sci. Rep. 6 (2016) 28911. https://doi.or g/10.1038/srep28911.

[91]

Y. Asai, H. Chiba, H. Nishikiori, R. Kamekura, H. Yabe, S. Kondo, S. Miyajima, K. Shigehara, S. Ichimiya, H. Takahashi, Aberrant populations of circulating T follicular helper cells and regulatory B cells underlying idiopathic pulmonary fibrosis, Respir. Res. 20 (1) (2019) 244. https://doi.org/10.1186/s12931-019-1216-6.

[92]

L. Song, D. Weng, F. Liu, Y. Chen, C. Li, L. Dong, W. Tang, J. Chen, Tregs promote the differentiation of Th17 cells in silica-induced lung fibrosis in mice, PLoS One 7 (5) (2012) e37286. https://doi.org/10.1371/journal.pone.0037286.

[93]

D.A.B. Rex, S. Dagamajalu, M.M. Gouda, G.P. Suchitha, J. Chanderasekaran, R. Raju, T.S.K. Prasad, Y.P. Bhandary, A comprehensive network map of IL-17A signaling pathway, J. Cell Commun. Signal. (2022) 1-7. https://doi.org/10.1007/s12079-022-00686-y.

[94]

G.J. Prud’homme, Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations, Lab. Invest. 87 (11) (2007) 1077-1091. https://doi.org/10.1038/labinvest.3700669.

[95]

J. Chen, X. Zhang, J. Xie, M. Xue, L. Liu, Y. Yang, H. Qiu, Overexpression of TGFβ1 in murine mesenchymal stem cells improves lung inflammation by impacting the Th17/Treg balance in LPS-induced ARDS mice, Stem Cell Res. Ther. 11 (1) (2020) 311. https://doi.org/10.21203/rs.3.rs-16570/v1.

[96]

S.Z. Birjandi, V. Palchevskiy, Y.Y. Xue, S. Nunez, R. Kern, S.S. Weigt, J.P. Lynch 3rd, T.A. Chatila, J.A. Belperio, CD4(t)CD25(hi)Foxp3(t) cells exacerbate bleomycin-induced pulmonary fibrosis, Am. J. Pathol. 186 (8) (2016) 2008-2020. https://doi.org/10.1016/j.ajpath.2016.03.020.

[97]

L. Wang, T. Zhu, D. Feng, R. Li, C. Zhang, Polyphenols from Chinese herbal medicine: molecular mechanisms and therapeutic targets in pulmonary fibrosis, Am. J. Chin. Med. 50 (4) (2022) 1063-1094. https://doi.org/10.1142/S0192415X22500434.

[98]

F. Xu, N. Tanabe, D.M. Vasilescu, J.E. McDonough, H.O. Coxson, K. Ikezoe, D. Kinose, K.W. Ng, S.E. Verleden, W.A. Wuyts, B.M. Vanaudenaerde, J. Verschakelen, J.D. Cooper, M.E. Lenburg, K.B. Morshead, A.R. Abbas, J.R. Arron, A. Spira, T.L. Hackett, T.V. Colby, C.J. Ryerson, R.T. Ng, J.C. Hogg, The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF), EBioMedicine 66 (2021) 103325. https://doi.org/10.1016/j.ebiom.2021.103325.

[99]

L.M. Crosby, C.M. Waters, Am. J. Physiol. Epithelial repair mechanisms in the lung, Am. J. Physiol. Lung Cell Mol. Physiol. 298 (6) (2010) L715-L731. https://doi.org/10.1152/ajplung.00361.2009.

[100]

B. Bartling, Cellular senescence in normal and premature lung aging, Z. Gerontol. Geriatr. 46 (7) (2013) 613-622. https://doi.org/10.1007/s00391-013-0543-3.

[101]

B. Ruaro, F. Salton, L. Braga, B. Wade, P. Confalonieri, M.C. Volpe, E. Baratella, S. Maiocchi, M. Confalonieri, The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung, Int. J. Mol. Sci. 22 (5) (2021) 2566. https://doi.org/10.3390/ijms22052566.

[102]

K. Shiraishi, T. Nakajima, S. Shichino, S. Deshimaru, K. Matsushima, S. Ueha, In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblastfree spheroid culture, Biochem. Biophys. Res. Commun. 515 (4) (2019) 579-585. https://doi.org/10.1016/j.bbrc.2019.05.187.

[103]

T.A. Wynn, Cellular and molecular mechanisms of fibrosis, J. Pathol. 214 (2) (2008) 199-210. https://doi.org/10.1002/path.2277.

[104]

C.L. Wilson, S.E. Stephenson, J.P. Higuero, C. Feghali-Bostwick, C.F. Hung, L.M. Schnapp, Characterization of human PDGFR-β-positive pericytes from IPF and non-IPF lungs, Am. J. Physiol. Lung Cell Mol. Physiol. 315 (6) (2018) L991-L1002. https://doi.org/10.1152/ajplung.00289.2018.

[105]

H. Farah, S.P. Young, C. Mauro, S.W. Jones, Metabolic dysfunction and inflammatory disease: the role of stromal fibroblasts, FEBS J 288 (19) (2021) 5555-5568. https://doi.org/10.1111/febs.15644.

[106]

S.U. Hettiarachchi, Y.-H. Li, J. Roy, F. Zhang, E. Puchulu-Campanella, S.D. Lindeman, M. Srinivasarao, K. Tsoyi, X. Liang, E.A. Ayaub, C. Nickerson- Nutter, I.O. Rosas, P.S. Low, Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models, Sci. Transl. Med. 12 (567) (2020) eaay3724, https://doi.org/10.1126/scitranslmed.aay3724.

[107]

S.M. Wahl, The role of lymphokines and monokines in fibrosis, Ann. N. Y. Acad. Sci. 460 (1985) 224-231. https://doi.org/10.1111/j.1749-6632.1985.tb51170.x.

[108]

K. Souma, S. Shichino, S. Hashimoto, S. Ueha, T. Tsukui, T. Nakajima, H.I. Suzuki, F.H.W. Shand, Y. Inagaki, T. Nagase, K. Matsushima, Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis, Sci. Rep. 8 (1) (2018) 16642. https://doi.org/10.1038/s41598-018-34839-0.

[109]

M.H. Fan, Q. Zhu, H.H. Li, H.J. Ra, S. Majumdar, D.L. Gulick, J.A. Jerome, D.H. Madsen, M. Christofidou-Solomidou, D.W. Speicher, W.W. Bachovchin, C. Feghali-Bostwick, E. Puré, Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice, J. Biol. Chem. 291 (15) (2016) 8070-8089. https://doi.org/10.1074/jbc.M115.701433.

[110]

H. Alkhouri, W.J. Poppinga, N.P. Tania, A. Ammit, M. Schuliga, Regulation of pulmonary inflammation by mesenchymal cells, Pulm. Pharmacol. Ther. 29 (2) (2014) 156-165. https://doi.org/10.1016/j.pupt.2014.03.001.

[111]

D.G. Adugna, Current clinical application of mesenchymal stem cells in the treatment of severe COVID-19 patients: review, Stem Cells Cloning 14 (2021) 71-80. https://doi.org/10.2147/SCCAA.S333800.

[112]

A. Al-Rubaie, A.F. Wise, F. Sozo, R. De Matteo, C.S. Samuel, R. Harding, S.D. Ricardo, The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice, Respir. Res. 19 (1) (2018) 114. https://doi.org/10.1186/s12931-018-0816-x.

[113]

Q. Cai, F. Yin, L. Hao, W. Jiang, Research progress of mesenchymal stem cell therapy for severe COVID-19, Stem Cell. Dev. 30 (9) (2021) 459-472. https://doi.org/10.1089/scd.2020.0198.

[114]

S. Yang, P. Liu, Y. Jiang, Z. Wang, H. Dai, C. Wang, Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis, Front. Cell Dev. Biol. 9 (2021) 639657. https://doi.org/10.3389/fcell.2021.639657.

[115]

N.W. Lukacs, C. Hogaboam, S.W. Chensue, K. Blease, S.L. Kunkel, Type 1/type 2 cytokine paradigm and the progression of pulmonary fibrosis, Chest 120 (1 Suppl) (2001) 5s-8s. https://doi.org/10.1378/chest.120.1_suppl.S5.

[116]

Y. Ren, M.C. Yao, X.Q. Huo, Y. Gu, W.X. Zhu, Y.J. Qiao, Y.L. Zhang, Study on treatment of “cytokine storm” by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway, Zhongguo Zhongyao Zazhi 45 (6) (2020) 1225-1231. https://doi.org/10.19540/j.cnki.cjcmm.20200224.405.

[117]

Y. Wang, L. Zhang, T. Huang, G.-R. Wu, Q. Zhou, F.-X. Wang, L.-M. Chen, F. Sun, Y. Lv, F. Xiong, S. Zhang, Q. Yu, P. Yang, W. Gu, Y. Xu, J. Zhao, H. Zhang, W. Xiong, C.-Y. Wang, The methyl-CpG-binding domain 2 facilitates pulmonary fibrosis by orchestrating fibroblast to myofibroblast differentiation, Eur. Respir. J. 60 (3) (2022). https://doi.org/10.1183/13993003.03697-2020.

[118]

B. Tian, Y. Zhao, H. Sun, Y. Zhang, J. Yang, A.R. Brasier, BR4 mediates NF-κBdependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation, Am. J. Physiol. Lung Cell Mol. Physiol. 311 (6) (2016) L1183-l1201. https://doi.org/10.1152/ajplung.00224.2016.

[119]

B.J. Thomas, O.K. Kan, K.L. Loveland, J.A. Elias, P.G. Bardin, In the shadow of fibrosis: innate immune suppression mediated by transforming growth factor-β Am. J. Respir. Cell Mol. Biol. 55 (6) (2016) 759-766. https://doi.org/10.1165/rcmb.2016-0248PS.

[120]

C. Upagupta, C. Shimbori, R. Alsilmi, M. Kolb, Matrix abnormalities in pulmonary fibrosis, Eur. Respir. Rev. 27 (148) (2018). https://doi.org/10.1183/16000617.0033-2018.

[121]

Y. Aschner, G.P. Downey, Transforming growth factor-β: master regulator of the respiratory system in health and disease, Am. J. Respir. Cell Mol. Biol. 54 (5) (2016) 647-655. https://doi.org/10.1165/rcmb.2015-0391TR.

[122]

P. Bonniaud, M. Kolb, T. Galt, J. Robertson, C. Robbins, M. Stampfli, C. Lavery, P.J. Margetts, A.B. Roberts, J. Gauldie, Smad 3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis, J. Immunol. 173 (3) (2004) 2099-2108. https://doi.org/10.4049/jimmunol.173.3.2099.

[123]

G.A. Stewart, G.F. Hoyne, S.A. Ahmad, E. Jarman, W.A. Wallace, D.J. Harrison, C. Haslett, J.R. Lamb, S.E. Howie, Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes, J. Pathol. 199 (4) (2003) 488-495. https://doi.org/10.1002/path.1295.

[124]

R. Yaraee, T. Ghazanfari, Substance P potentiates TGFβ-1 production in lung epithelial cell lines, Iran. J. Allergy, Asthma Immunol. 8 (1) (2009) 19-24.

[125]

J.H. Kim, H.Y. Kim, S. Kim, J.H. Chung, W.S. Park, D.H. Chung, Natural killer T (NKT) cells attenuate bleomycin-induced pulmonary fibrosis by producing interferon-gamma, Am. J. Pathol. 167 (5) (2005) 1231-1241. https://doi.org/10.1016/S0002-9440(10)61211-4.

[126]

C.C. Tsao, P.N. Tsao, Y.G. Chen, Y.H. Chuang, Repeated activation of lung invariant NKT cells results in chronic obstructive pulmonary disease-like symptoms, PLoS One 11 (1) (2016) e0147710. https://doi.org/10.1371/journal.pone.0147710.

[127]

Y.X. She, Q.Y. Yu, X.X. Tang, Role of interleukins in the pathogenesis of pulmonary fibrosis, Cell Death Dis. 7 (1) (2021) 52. https://doi.org/10.1038/s41420-021-00437-9.

[128]

S. Mi, Z. Li, H.Z. Yang, H. Liu, J.P. Wang, Y.G. Ma, X.X. Wang, H.Z. Liu, W. Sun, Z.W. Hu, Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms, J. Immunol. 187 (6) (2011) 3003-3014. https://doi.org/10.4049/jimmunol.1004081.

[129]

S.B. Shaikh, A. Prabhu, Y.P. Bhandary, Interleukin-17A: a potential therapeutic target in chronic lung diseases, Endocr., Metab. Immune Disord.: Drug Targets 19 (7) (2019) 921-928. https://doi.org/10.2174/1871530319666190116115226.

[130]

J. Borowczyk, M. Shutova, N.C. Brembilla, W.H. Boehncke, IL-25 (IL-17E) in epithelial immunology and pathophysiology, J. Allergy Clin. Immunol. 148 (1) (2021) 40-52. https://doi.org/10.1016/j.jaci.2020.12.628.

[131]

A. François, A. Gombault, B. Villeret, G. Alsaleh, M. Fanny, P. Gasse, S.M. Adam, B. Crestani, J. Sibilia, P. Schneider, S. Bahram, V. Quesniaux, B. Ryffel, D. Wachsmann, J.E. Gottenberg, I. Couillin, B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis, J. Autoimmun. 56 (2015) 1-11. https://doi.org/10.1016/j.jaut.2014.08.003.

[132]

R.W. Freeburn, H. Kendall, L. Dobson, J. Egan, N.J. Simler, A.B. Millar, The 3' untranslated region of tumor necrosis factor-alpha is highly conserved in idiopathic pulmonary fibrosis (IPF), Eur. Cytokine Netw. 12 (1) (2001) 33-38.

[133]

X. Xu, H. Dai, J. Zhang, The potential role of interleukin (IL)-25/IL-33/thymic stromal lymphopoietin (TSLP) on the pathogenesis of idiopathic pulmonary fibrosis, Clin. Res. J (2022). https://doi.org/10.1111/crj.13541.

[134]

K. Yang, C. Tian, C. Zhang, M. Xiang, The controversial role of IL-33 in lung cancer, Front. Immunol. 13 (2022) 897356. https://doi.org/10.3389/fimmu.2022.897356.

[135]

X.M. Yi, M. Li, Y.D. Chen, H.B. Shu, S. Li,Reciprocal regulation of IL-33 receptormediated inflammatory response and pulmonary fibrosis by TRAF6 and USP38, Proc. Natl. Acad. Sci. 119 (10) (2022) e2116279119. https://doi.org/10.1073/pnas.2116279119.

[136]

I.G. Luzina, R. Fishelevich, B.S. Hampton, J.P. Courneya, F.R. Parisella, K.N. Lugkey, F.X. Baleno, D. Choi, P. Kopach, V. Lockatell, N.W. Todd, S.P. Atamas, Full-length IL-33 regulates Smad3 phosphorylation and gene transcription in a distinctive AP2-dependent manner, Cell. Immunol. 357 (2020) 104203. https://doi.org/10.1016/j.cellimm.2020.104203.

[137]

Q. Gao, Y. Li, M. Li, The potential role of IL-33/ST2 signaling in fibrotic diseases, J. Leukoc. Biol. 98 (1) (2015) 15-22. https://doi.org/10.1189/jlb.3RU0115-012R.

[138]

A. Datta, R. Alexander, M.G. Sulikowski, A.G. Nicholson, T.M. Maher, C.J. Scotton, R.C. Chambers, Evidence for a functional thymic stromal lymphopoietin signaling axis in fibrotic lung disease, J. Immunol. 191 (9) (2013) 4867-4879. https://doi.org/10.4049/jimmunol.1300588.

[139]

T. Tomankova, E. Kriegova, M. Liu, Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking, Am. J. Physiol. Lung Cell Mol. Physiol. 308 (7) (2015) L603-L618. https://doi.org/10.1152/ajplung.00203.2014.

[140]

M. Cai, F. Bonella, X. He, S.U. Sixt, R. Sarria, J. Guzman, U. Costabel, CCL 18 in serum, BAL fluid and alveolar macrophage culture supernatant in interstitial lung diseases, Respir. Med. 107 (9) (2013) 1444-1452. https://doi.org/10.1016/j.rmed.2013.06.004.

[141]

H. Cai, S. Chen, X. Li, H. Liu, Y. Zhang, Q. Zhuang, The combined model of CX3CR1-related immune infiltration genes to evaluate the prognosis of idiopathic pulmonary fibrosis, Front. Immunol. 13 (2022) 837188. https://doi.org/10.3389/fimmu.2022.837188.

[142]

S. Mizutani, J. Nishio, K. Kondo, K. Motomura, Z. Yamada, S. Masuoka, S. Yamada, S. Muraoka, N. Ishii, Y. Kuboi, S. Sendo, T. Mikami, T. Imai, T. Nanki, Treatment with an anti-CX3CL1 antibody suppresses M1 macrophage infiltration in interstitial lung disease in SKG mice, Pharmaceuticals 14 (5) (2021) 474. https://doi.org/10.3390/ph14050474.

[143]

K.E. Driscoll, Macrophage inflammatory proteins: biology and role in pulmonary inflammation, Exp. Lung Res. 20 (6) (1994) 473-490. https://doi.org/10.3109/01902149409031733.

[144]

S. Bazan-Socha, A. Bukiej, C. Marcinkiewicz, J. Musial, Integrins in pulmonary inflammatory diseases, Curr. Pharmaceut. Des. 11 (7) (2005) 893-901. https://doi.org/10.2174/1381612053381710.

[145]

J. Hamacher, T. Schaberg, Adhesion molecules in lung diseases, Lung 172 (4) (1994) 189-213. https://doi.org/10.1007/BF00164437.

[146]

E. Addis-Lieser, J. K€ohl, M.G. Chiaramonte, Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis, J. Immunol. 175 (3) (2005) 1894-1902. https://doi.org/10.4049/jimmunol.175.3.1894.

[147]

H. Gu, A.J. Fisher, E.A. Mickler, F. Duerson 3rd, O.W. Cummings, M. Peters- Golden, H.L. Twigg 3rd, T.M. Woodruff, D.S. Wilkes, R. Vittal, Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis, Faseb. J. 30 (6) (2016) 2336-2350. https://doi.org/10.1096/fj.201500044.

[148]

T. Ogawa, S. Shichino, S. Ueha, S. Ogawa, K. Matsushima, Complement protein C1q activates lung fibroblasts and exacerbates silica-induced pulmonary fibrosis in mice, Biochem. Biophys. Res. Commun. 603 (2022) 88-93. https://doi.org/10.1016/j.bbrc.2022.02.090.

[149]

N. Cox, D. Pilling, R.H. Gomer,DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice, Proc. Natl. Acad. Sci. 112 (27) (2015) 8385-8390. https://doi.org/10.1073/pnas.1500956112.

[150]

A. Doni, A. Mantovani, B. Bottazzi, R.C. Russo, PTX3 regulation of inflammation, hemostatic response, tissue repair, and resolution of fibrosis favors a role in limiting idiopathic pulmonary fibrosis, Front. Immunol. 12 (2021) 676702. https://doi.org/10.3389/fimmu.2021.676702.

[151]

C.D. Mills, K. Kincaid, J.M. Alt, M.J. Heilman, A.M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J. Immunol. 164 (12) (2000) 6166-6173. https://doi.org/10.4049/jimmunol.164.12.6166.

[152]

P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, T.A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity 41 (1) (2014) 14-20. https://doi.org/10.1016/j.immuni.2014.06.008.

[153]

K. Shenderov, S.L. Collins, J.D. Powell, M.R. Horton, Immune dysregulation as a driver of idiopathic pulmonary fibrosis, J. Clin. Investig. 131 (2) (2021). https://doi.org/10.1172/JCI143226.

[154]

S. Saito, A. Alkhatib, J.K. Kolls, Y. Kondoh, J.A. Lasky, Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF), J. Thorac. Dis. 11 (Suppl 14) (2019) S1740-S1754. https://doi.org/10.21037/jtd.2019.04.62.

[155]

R.L. Toonkel, J.M. Hare, M.A. Matthay, M.K. Glassberg, Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing, Am. J. Respir. Crit. Care Med. 188 (2) (2013) 133-140. https://doi.org/10.1164/rccm.201207-1204PP.

[156]

M. Liu, D. Ren, D. Wu, J. Zheng, W. Tu, Stem cell and idiopathic pulmonary fibrosis: mechanisms and treatment, Curr. Stem Cell Res. Ther. 10 (6) (2015) 466-476. https://doi.org/10.2174/1574888x10666150519092639.

[157]

D.C. Chambers, D. Enever, N. Ilic, L. Sparks, K. Whitelaw, J. Ayres, S.T. Yerkovich, D. Khalil, K.M. Atkinson, P.M.A. Hopkins, A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis, Respirology 19 (7) (2014) 1013-1018. https://doi.org/10.1111/resp.12343.

[158]

M.K. Glassberg, J. Minkiewicz, R.L. Toonkel, E.S. Simonet, G.A. Rubio, D. DiFede, S. Shafazand, A. Khan, M.V. Pujol, V.F. LaRussa, L.H. Lancaster, G.D. Rosen, J. Fishman, Y.N. Mageto, A. Mendizabal, J.M. Hare, Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I safety clinical trial, Chest 151 (5) (2017) 971-981. https://doi.org/10.1016/j.chest.2016.10.061.

[159]

A. Averyanov, I. Koroleva, M. Konoplyannikov, V. Revkova, V. Lesnyak, V. Kalsin, O. Danilevskaya, A. Nikitin, A. Sotnikova, S. Kotova, V. Baklaushev, First-inhuman high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline, Stem Cells Transl. Med. 9 (1) (2020) 6-16. https://doi.org/10.1002/sctm.19-0037.

[160]

P. Ntolios, E. Manoloudi, A. Tzouvelekis, E. Bouros, P. Steiropoulos, S. Anevlavis, D. Bouros, M.E. Froudarakis, Longitudinal outcomes of patients enrolled in a phase Ib clinical trial of the adipose-derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis, Clin. Res. J. 12 (6) (2018) 2084-2089. https://doi.org/10.1111/crj.12777.

[161]

A. Tzouvelekis, V. Paspaliaris, G. Koliakos, P. Ntolios, E. Bouros, A. Oikonomou, A. Zissimopoulos, N. Boussios, B. Dardzinski, D. Gritzalis, A. Antoniadis, M. Froudarakis, G. Kolios, D. Bouros, A prospective, non-randomized, no placebocontrolled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis, J. Transl. Med. 11 (2013) 171. https://doi.org/10.1186/1479-5876-11-171.

[162]

G. Raghu, M. Mouded, A. Prasse, C. Stebbins, G. Zhao, G. Song, M. Arefayene, S.M. Violette, D. Gallagher, K.F. Gibson, Randomized phase IIa clinical study of an anti-α(v)β(6) monoclonal antibody in idiopathic pulmonary fibrosis, Am. J. Respir. Crit. Care Med. 206 (9) (2022) 1166-1168. https://doi.org/10.1164/rccm.202205-0868LE.

[163]

G. Raghu, M. Mouded, D.C. Chambers, F.J. Martinez, L. Richeldi, L.H. Lancaster, M.J. Hamblin, K.F. Gibson, I.O. Rosas, A. Prasse, G. Zhao, M. Serenko, N. Novikov, A. McCurley, P. Bansal, C. Stebbins, M. Arefayene, S. Ibebunjo, S.M. Violette, D. Gallagher, J. Behr, A phase IIb randomized clinical study of an anti-α(v)β(6) monoclonal antibody in idiopathic pulmonary fibrosis, Am. J. Respir. Crit. Care Med. 206 (9) (2022) 1128-1139. https://doi.org/10.1164/rccm.202112-2824OC.

[164]

C.H. Maden, D. Fairman, M. Chalker, M.J. Costa, W.A. Fahy, N. Garman, P.T. Lukey, T. Mant, S. Parry, J.K. Simpson, R.J. Slack, S. Kendrick, R.P. Marshall, Safety, tolerability and pharmacokinetics of GSK3008348, a novel integrin αvβ6 inhibitor, in healthy participants, Eur. J. Clin. Pharmacol. 74 (6) (2018) 701-709. https://doi.org/10.1007/s00228-018-2435-3.

[165]

T.M. Maher, J.K. Simpson, J.C. Porter, F.J. Wilson, R. Chan, R. Eames, Y. Cui, S. Siederer, S. Parry, J. Kenny, R.J. Slack, J. Sahota, L. Paul, P. Saunders, P.L. Molyneaux, P.T. Lukey, G. Rizzo, G.E. Searle, R.P. Marshall, A. Saleem, A.R. Kang'ombe, D. Fairman, W.A. Fahy, M. Vahdati-Bolouri, A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor, Respir. Res. 21 (1) (2020) 75. https://doi.org/10.1186/s12931-020-01339-7.

[166]

L. Richeldi, E.R. Fernández Pérez, U. Costabel, C. Albera, D.J. Lederer, K.R. Flaherty, N. Ettinger, R. Perez, M.B. Scholand, J. Goldin, K.H. Peony Yu, T. Neff, S. Porter, M. Zhong, E. Gorina, E. Kouchakji, G. Raghu, Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial, Lancet Respir. Med. 8 (1) (2020) 25-33. https://doi.org/10.1016/S2213-2600(19)30262-0.

[167]

I. Ninou, C. Magkrioti, V. Aidinis, Autotaxin in pathophysiology and pulmonary fibrosis, Front. Med. 5 (2018) 180. https://doi.org/10.3389/fmed.2018.00180.

[168]

A. Taneja, J. Desrivot, P.M. Diderichsen, R. Blanqué, L. Allamasey, L. Fagard, A. Fieuw, E. Van der Aar, F. Namour, Population pharmacokinetic and pharmacodynamic analysis of GLPG1690, an autotaxin inhibitor, in healthy volunteers and patients with idiopathic pulmonary fibrosis, Clin. Pharmacokinet. 58 (9) (2019) 1175-1191. https://doi.org/10.1007/s40262-019-00755-3.

[169]

E. van der Aar, J. Desrivot, S. Dupont, B. Heckmann, A. Fieuw, S. Stutvoet, L. Fagard, K. Van de Wal, E. Helmer, Safety, pharmacokinetics, and pharmacodynamics of the autotaxin inhibitor GLPG1690 in healthy subjects: phase 1 randomized trials, J. Clin. Pharmacol. 59 (10) (2019) 1366-1378. https://doi.org/10.1002/jcph.1424.

[170]

T.M. Maher, E.M. van der Aar, O. Van de Steen, L. Allamassey, J. Desrivot, S. Dupont, L. Fagard, P. Ford, A. Fieuw, W. Wuyts, Safety tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomized placebo-controlled trial, Lancet Respir. Med. 6 (8) (2018) 627-635. https://doi.org/10.1016/S2213-2600(18)30181-4.

[171]

T.M. Maher, M. Kreuter, D.J. Lederer, K.K. Brown, W. Wuyts, N. Verbruggen, S. Stutvoet, A. Fieuw, P. Ford, W. Abi-Saab, M. Wijsenbeek, Rationale, design and objectives of two phase III, randomised, placebo-controlled studies of GLPG1690, a novel autotaxin inhibitor, in idiopathic pulmonary fibrosis (ISABELA 1 and 2), BMJ Open Respir. Res. 6 (1) (2019) e000422. https://doi.org/10.1136/bmjresp-2019-000422.

[172]

S. Llona-Minguez, A. Ghassemian, T. Helleday, Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox, Prog. Lipid Res. 58 (2015) 51-75. https://doi.org/10.1016/j.plipres.2015.01.004.

[173]

S.M. Palmer, L. Snyder, J.L. Todd, B. Soule, R. Christian, K. Anstrom, Y. Luo, R. Gagnon, G. Rosen, Randomized, double-blind, placebo-controlled, phase 2 trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis, Chest 154 (5) (2018) 1061-1069. https://doi.org/10.1016/j.chest.2018.08.1058.

[174]

G.H.J. Kim, J.G. Goldin, W. Hayes, A. Oh, B. Soule, S. Du, The value of imaging and clinical outcomes in a phase II clinical trial of a lysophosphatidic acid receptor antagonist in idiopathic pulmonary fibrosis, Ther. Adv. Respir. Dis. 15 (2021), 17534666211004238, https://doi.org/10.1177/17534666211004238.

[175]

B.E. Decato, D.J. Leeming, J.M.B. Sand, A. Fischer, S. Du, S.M. Palmer, M. Karsdal, Y. Luo, A. Minnich, LPA(1) antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis, Respir. Res. 23 (1) (2022) 61. https://doi.org/10.1186/s12931-022-01980-4.

[176]

T.J. Corte, L. Lancaster, J.J. Swigris, T.M. Maher, J.G. Goldin, S.M. Palmer, T. Suda, T. Ogura, A. Minnich, X. Zhan, G.S. Tirucherai, B. Elpers, H. Xiao, H. Watanabe, R.A. Smith, E.D. Charles, A. Fischer, Phase 2 trial design of BMS- 986278, a lysophosphatidic acid receptor 1 (LPA(1)) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD), BMJ Open Respir. Res. 8 (1) (2021) e001026. https://doi.org/10.1136/bmjresp-2021-001026.

[177]

C. Jakubzick, S.L. Kunkel, R.K. Puri, C.M. Hogaboam, Therapeutic targeting of IL- 4- and IL-13-responsive cells in pulmonary fibrosis, Immunol. Res. 30 (3) (2004) 339-349. https://doi.org/10.1385/IR:30:3:339.

[178]

T.M. Maher, U. Costabel, M.K. Glassberg, Y. Kondoh, T. Ogura, M.B. Scholand, D. Kardatzke, M. Howard, J. Olsson, M. Neighbors, P. Belloni, J.J. Swigris, Phase 2 trial to assess lebrikizumab in patients with idiopathic pulmonary fibrosis, Eur. Respir. J. 57 (2) (2021). https://doi.org/10.1183/13993003.02442-2019.

[179]

J.M. Parker, I.N. Glaspole, L.H. Lancaster, T.J. Haddad, D. She, S.L. Roseti, J.P. Fiening, E.P. Grant, C.M. Kell, K.R. Flaherty, A phase 2 randomized controlled study of Tralokinumab in subjects with idiopathic pulmonary fibrosis, Am. J. Respir. Crit. Care Med. 197 (1) (2018) 94-103. https://doi.org/10.1164/rccm.201704-0784OC.

[180]

G. Raghu, L. Richeldi, B. Crestani, P. Wung, R. Bejuit, C. Esperet, C. Antoni, C. Soubrane, SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebocontrolled study (DRI11772), Eur. Respir. J. 52 (6) (2018). hhttps://doi.org/10.1183/13993003.01130-2018.

[181]

N. Hirani, A.C. MacKinnon, L. Nicol, P. Ford, H. Schambye, A. Pedersen, U.J. Nilsson, H. Leffler, T. Sethi, S. Tantawi, L. Gravelle, R.J. Slack, R. Mills, U. Karmakar, D. Humphries, F. Zetterberg, L. Keeling, L. Paul, P.L. Molyneaux, F. Li, W. Funston, I.A. Forrest, A.J. Simpson, M.A. Gibbons, T.M. Maher, Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis, Eur. Respir. J. 57 (5) (2021). https://doi.org/10.1183/13993003.02559-2020.

[182]

G. Raghu, B. van den Blink, M.J. Hamblin, A.W. Brown, J.A. Golden, L.A. Ho, M.S. Wijsenbeek, M. Vasakova, A. Pesci, D.E. Antin-Ozerkis, K.C. Meyer, M. Kreuter, D. Moran, H. Santin-Janin, F. Aubin, G.J. Mulder, R. Gupta, L. Richeldi, Long-term treatment with recombinant human pentraxin 2 protein in patients with idiopathic pulmonary fibrosis: an open-label extension study, Lancet Respir. Med. 7 (8) (2019) 657-664. https://doi.org/10.1016/S2213-2600(19)30172-9.

[183]

G. Raghu, B. van den Blink, M.J. Hamblin, A.W. Brown, J.A. Golden, L.A. Ho, M.S. Wijsenbeek, M. Vasakova, A. Pesci, D.E. Antin-Ozerkis, K.C. Meyer, M. Kreuter, H. Santin-Janin, G.J. Mulder, B. Bartholmai, R. Gupta, L. Richeldi, Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: a randomized clinical trial, JAMA 319 (22) (2018) 2299-2307. https://doi.org/10.1001/jama.2018.6129.

[184]

G. Raghu, M.J. Hamblin, A.W. Brown, J.A. Golden, L.A. Ho, M.S. Wijsenbeek, M. Vasakova, A. Pesci, D.E. Antin-Ozerkis, K.C. Meyer, M. Kreuter, T. Burgess, N. Kamath, F. Donaldson, L. Richeldi, Long-term evaluation of the safety and efficacy of recombinant human pentraxin-2 (rhPTX-2) in patients with idiopathic pulmonary fibrosis (IPF): an open-label extension study, Respir. Res. 23 (1) (2022) 129. https://doi.org/10.1186/s12931-022-02047-0.

[185]

S.L. Brody, S.P. Gunsten, H.P. Luehmann, D.H. Sultan, M. Hoelscher, G.S. Heo, J. Pan, J.R. Koenitzer, E.C. Lee, T. Huang, C. Mpoy, S. Guo, R. Laforest, A. Salter, T.D. Russell, A. Shifren, C. Combadiere, K.J. Lavine, D. Kreisel, B.D. Humphreys, B.E. Rogers, D.S. Gierada, D.E. Byers, R.J. Gropler, D.L. Chen, J.J. Atkinson, Y. Liu, Chemokine receptor 2-targeted molecular imaging in pulmonary fibrosis. A clinical trial, Am. J. Respir. Crit. Care Med. 203 (1) (2021) 78-89. https://doi.org/10.1164/rccm.202004-1132OC.

[186]

D.C. Gomez-Manjarres, D.B. Axell-House, D.C. Patel, J. Odackal, V. Yu, M.D. Burdick, B. Mehrad, Sirolimus suppresses circulating fibrocytes in idiopathic pulmonary fibrosis in a randomized controlled crossover trial, JCI Insight 8 (8) (2023). https://doi.org/10.1172/jci.insight.166901.

[187]

G. Raghu, K.K. Brown, H.R. Collard, V. Cottin, K.F. Gibson, R.J. Kaner, D.J. Lederer, F.J. Martinez, P.W. Noble, J.W. Song, A.U. Wells, T.P. Whelan, W. Wuyts, E. Moreau, S.D. Patterson, V. Smith, S. Bayly, J.W. Chien, Q. Gong, J.J. Zhang, T.G. O’Riordan, Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial, Lancet Respir, Med 5 (1) (2017) 22-32. https://doi.org/10.1016/S2213-2600(16)30421-0.

[188]

T.S. Blackwell, J.C. Hewlett, W.R. Mason, S. Martin, J. Del Greco, G. Ding, P. Wu, L.H. Lancaster, J.E. Loyd, R.B. Dudenhofer, M.L. Salisbury, J.A. Kropski, A phase I randomized, controlled, clinical trial of valganciclovir in idiopathic pulmonary fibrosis, Ann. Am. Thorac. Soc. 18 (8) (2021) 1291-1297. https://doi.org/10.1513/AnnalsATS.202102-108OC.

[189]

S.A. Guler, C. Clarenbach, M. Brutsche, K. Hostettler, A.K. Brill, A. Schertel, T.K. Geiser, M. Funke-Chambour, Azithromycin for the treatment of chronic cough in idiopathic pulmonary fibrosis: a randomized controlled crossover trial, Ann. Am. Thorac. Soc. 18 (12) (2021) 2018-2026. https://doi.org/10.1513/AnnalsATS.202103-266OC.

[190]

F.J. Martinez, E. Yow, K.R. Flaherty, L.D. Snyder, M.T. Durheim, S.R. Wisniewski, F.C. Sciurba, G. Raghu, M.M. Brooks, D.Y. Kim, D.F. Dilling, G.J. Criner, H. Kim, E.A. Belloli, A.M. Nambiar, M.B. Scholand, K.J. Anstrom, I. Noth, Effect of antimicrobial therapy on respiratory hospitalization or death in adults with idiopathic pulmonary fibrosis: the CleanUP-IPF randomized clinical trial, JAMA 325 (18) (2021) 1841-1851. https://doi.org/10.1001/jama.2021.4956.

[191]

A.M. Wilson, A.B. Clark, T. Cahn, E.R. Chilvers, W. Fraser, M. Hammond, D.M. Livermore, T.M. Maher, H. Parfrey, A.M. Swart, S. Stirling, D.R. Thickett, M. Whyte, Effect of Co-trimoxazole (Trimethoprim-Sulfamethoxazole) vs placebo on death, lung transplant, or hospital admission in patients with moderate and severe idiopathic pulmonary fibrosis: the EME-TIPAC randomized clinical trial, JAMA 324 (22) (2020) 2282-2291. https://doi.org/10.1001/jama.2020.22960.

[192]

A.P.M. Serezani, B.D. Pascoalino, J.M.R. Bazzano, K.N. Vowell, H. Tanjore, C.J. Taylor, C.L. Calvi, A.S. McCall, M.D. Bacchetta, C.M. Shaver, L.B. Ware, M.L. Salisbury, N.E. Banovich, P.L. Kendall, J.A. Kropski, T.S. Blackwell, Multiplatform single-cell analysis identifies immune cell types enhanced in pulmonary fibrosis, Am. J. Respir. Cell Mol. Biol. 67 (1) (2022) 50-60. https://doi.org/10.1165/rcmb.2021-0418OC.

[193]

S.L. Collins, Y. Chan-Li, R.W. Hallowell, J.D. Powell, M.R. Horton, Pulmonary vaccination as a novel treatment for lung fibrosis, PLoS One 7 (2) (2012) e31299. https://doi.org/10.1371/journal.pone.0031299.

[194]

S. Murthy, J.L. Larson-Casey, A.J. Ryan, C. He, L. Kobzik, A.B. Carter, Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure, Faseb. J. 29 (8) (2015) 3527-3536. https://doi.org/10.1096/fj.15-271304.

[195]

J.W. Lee, W. Chun, H.J. Lee, J.H. Min, S.M. Kim, J.Y. Seo, K.S. Ahn, S.R. Oh, The role of macrophages in the development of acute and chronic inflammatory lung diseases, Cells 10 (4) (2021) 897. https://doi.org/10.3390/cells10040897.

[196]

X. Chen, R. Sun, J. Hu, Z. Mo, Z. Yang, D. Liao, N. Zhong, Attenuation of bleomycin-induced lung fibrosis by oxymatrine is associated with regulation of fibroblast proliferation and collagen production in primary culture, Basic Clin. Pharmacol. Toxicol. 103 (3) (2008) 278-286. https://doi.org/10.1111/j.1742-7843.2008.00287.x.

[197]

E. Avci, P. Sarvari, R. Savai, W. Seeger, S.S. Pullamsetti, Epigenetic mechanisms in parenchymal lung diseases: bystanders or therapeutic targets? Int. J. Mol. Sci. 23 (1) (2022) 546. https://doi.org/10.3390/ijms23010546.

[198]

A. Singh, S. Chakraborty, S.W. Wong, N.A. Hefner, A. Stuart, A.S. Qadir, A. Mukhopadhyay, K. Bachmaier, J.W. Shin, J. Rehman, A.B. Malik, Nanoparticle targeting of de novo profibrotic macrophages mitigates lung fibrosis, Proc. Natl. Acad. Sci. 119 (15) (2022) e2121098119, https://doi.org/10.1073/pnas.2121098119.

[199]

J. Wang, K. Hu, X. Cai, B. Yang, Q. He, J. Wang, Q. Weng, Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis, Acta Pharm. Sin. B 12 (1) (2022) 18-32. https://doi.org/10.1016/j.apsb.2021.07.023.

[200]

L. Sun, M. Fan, D. Huang, B. Li, R. Xu, F. Gao, Y. Chen, Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis, Biomaterials 271 (2021) 120761. https://doi.org/10.1016/j.biomaterials.2021.120761.

[201]

R. Li, Y. Jia, X. Kong, Y. Nie, Y. Deng, Y. Liu, Novel drug delivery systems and disease models for pulmonary fibrosis, J. Contr. Release 348 (2022) 95-114. https://doi.org/10.1016/j.jconrel.2022.05.039.

[202]

T. Karampitsakos, B.M. Juan-Guardela, A. Tzouvelekis, J.D. Herazo-Maya, Precision medicine advances in idiopathic pulmonary fibrosis, EBioMedicine 95 (2023) 104766. https://doi.org/10.1016/j.ebiom.2023.104766.

[203]

Y. Zhang, P. Lu, H. Qin, Y. Zhang, X. Sun, X. Song, J. Liu, H. Peng, Y. Liu, E.O. Nwafor, J. Li, Z. Liu, Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: rationale and therapeutic potential, Biomed. Pharmacother. 133 (2021) 111072. https://doi.org/10.1016/j.biopha.2020.111072.

[204]

J. Liu, Z. Wu, Y. Liu, Z. Zhan, L. Yang, C. Wang, Q. Jiang, H. Ran, P. Li, Z. Wang, ROS-responsive liposomes as an inhaled drug delivery nanoplatform for idiopathic pulmonary fibrosis treatment via Nrf2 signaling, J. Nanobiotechnol. 20 (1) (2022) 213. https://doi.org/10.1186/s12951-022-01435-4.

[205]

D. Chanda, E. Otoupalova, S.R. Smith, T. Volckaert, S.P. De Langhe, V.J. Thannickal, Developmental pathways in the pathogenesis of lung fibrosis, Mol. Aspect. Med. 65 (2019) 56-69. https://doi.org/10.1016/j.mam.2018.08.004.

[206]

M.L. Salisbury, M.S. Wijsenbeek, Management of idiopathic pulmonary fibrosis, Clin. Chest Med. 42 (2) (2021) 275-285. https://doi.org/10.1177/1060028019862497.

[207]

F.J. Martinez, H.R. Collard, A. Pardo, G. Raghu, L. Richeldi, M. Selman, J.J. Swigris, H. Taniguchi, A.U. Wells, Idiopathic pulmonary fibrosis, Nat. Rev. Dis. Prim. 3 (2017) 17074. https://doi.org/10.1016/S0140-6736(11)60052-4.

[208]

H. Patel, J.R. Shah, D.R. Patel, C. Avanthika, S. Jhaveri, K. Gor, Idiopathic pulmonary fibrosis: diagnosis, biomarkers and newer treatment protocols, Dis. Mon. 69 (7) (2023) 101484. https://doi.org/10.1016/j.disamonth.2022.101484.

AI Summary AI Mindmap
PDF (1054KB)

475

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/