Sclareol exerts an anti-inflammatory effect, possibly through COXs inhibition pathway: In vivo and in silico studies

Abdullah Al Shamsh Prottay , Mehedi Hasan Bappi , Md Showkoth Akbor , Afia Ibnath Asha , Md Shimul Bhuia , Aqib Adnan Shafin , Md Nayem Mia , Mohammad S. Mubarak , Micheline de Azevedo Lima , Henrique Douglas Melo Coutinho , Muhammad Torequl Islam

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100029

PDF (2425KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100029 DOI: 10.1016/j.pscia.2023.100029
Research Article
research-article

Sclareol exerts an anti-inflammatory effect, possibly through COXs inhibition pathway: In vivo and in silico studies

Author information +
History +
PDF (2425KB)

Abstract

Chronic and severe inflammation results in many diseases and disorders in humans. Currently, available conventional anti-inflammatory drugs have numerous mild-to-severe side effects. Thus, there is a need for safe, effective, affordable, and alternative anti-inflammatory drugs. This study aimed to evaluate the anti-inflammatory effect of sclareol (SCL), a diterpene alcohol that is the principal ingredient in the refined oil of Salvia sclarea (L.), through in vivo and in silico studies. First, we examined the individual and combined effects of SCL (5, 10, and 20 mg/kg) and standard drugs celecoxib (CXB) or ketoprofen (KPN) at 42 mg/kg (p.o.) on the formalin-induced inflammatory Swiss mice. Additionally, an in silico analysis was conducted to evaluate the potential anti-inflammatory mechanism of this study. For this, we examined the potentiality of SCL and standards to interact with cyclooxygenase (COX) -1 and COX-2 receptors. Our findings suggest that SCL exhibits a dose-dependent anti-inflammatory effect in mice. SCL-20 mg/kg significantly reduced the number of paw licks and paw edema diameters. Moreover, SCL-20 combined with CXB-42 and KPN-42 demonstrated better anti-inflammatory effects. In comparison to the standards, SCL revealed a comparable binding interaction with COX-1 and COX-2 receptors in the molecular docking study. Furthermore, SCL displayed remarkable pharmacokinetic characteristics. In conclusion, SCL significantly and dose-dependently reduced the number of paw licks and edema diameters in animals. Thus, SCL may be responsible for producing an anti-inflammatory effect by interacting with COX-1 and COX-2 receptors.

Keywords

Inflammation / Sclareol / Cyclooxygenase / Anti-Inflammatory effect / Molecular docking simulation

Cite this article

Download citation ▾
Abdullah Al Shamsh Prottay, Mehedi Hasan Bappi, Md Showkoth Akbor, Afia Ibnath Asha, Md Shimul Bhuia, Aqib Adnan Shafin, Md Nayem Mia, Mohammad S. Mubarak, Micheline de Azevedo Lima, Henrique Douglas Melo Coutinho, Muhammad Torequl Islam. Sclareol exerts an anti-inflammatory effect, possibly through COXs inhibition pathway: In vivo and in silico studies. Pharmaceutical Science Advances, 2024, 2(1): 100029 DOI:10.1016/j.pscia.2023.100029

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Abdullah Al Shamsh Prottay: Conceptualization, Methodology, Software, First Draft of the Manuscript; Mehedi Hasan Bappi: Methodology, Software; Md. Showkoth Akbor: Methodology; Afia Ibnath Asha: Data curation; Md. Shimul Bhuia: Resources; Aqib Adnan Shafin: First Draft of the Manuscript; Md. Nayem Mia: Software; Mohammad S. Mubarak: Supervision; Henrique Douglas Melo Coutinho: Project administration; Muhammad Torequl Islam: Supervision. All the authors have read and agreed to the published version of the manuscript.

Data availability statement

This published article contains the data collected or studied during this investigation. Information will be provided upon valid request.

Funding

No funding.

Ethics approval

Experimental design and procedures were approved by the Animal and Human Ethics Committee of BSMRSTU (#2023-33).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group research project under grant number: RGP2/362/44.

References

[1]

A.S. MacLeod, J.N. Mansbridge, The innate immune system in acute and chronic wounds, Adv. Wound Care 5 (2016) 65-78. https://doi.org/10.1089/wound.2014.0608.

[2]

A. Sharma, S. Khanna, G. Kaur, I. Singh, Medicinal plants and their components for wound healing applications, Future J. Pharm. Sci. 7 (2021) 1-13. https://doi.org/10.1186/s43094-021-00202-w.

[3]

K. Jin, Z. Luo, B. Zhang, Z. Pang, Biomimetic nanoparticles for inflammation targeting, Acta Pharm. Sin. B 8 (2018) 23-33. https://doi.org/10.1016/j.apsb.2017.12.002.

[4]

K.M. Galler, M. Weber, Y. Korkmaz, M. Widbiller, M. Feuerer, Inflammatory response mechanisms of the dentine-pulp complex and the periapical tissues, Int. J. Mol. Sci. 22 (2021) 1480. https://doi.org/10.3390/ijms22031480.

[5]

C.N. Serhan, S.K. Gupta, M. Perretti, C. Godson, E. Brennan, Y. Li, O. Soehnlein, T. Shimizu, O. Werz, V. Chiurchiù, The atlas of inflammation resolution (AIR), Mol. Aspects Med. 74 (2020) 100894. https://doi.org/10.1016/j.mam.2020.100894.

[6]

H. Zhao, L. Wu, G. Yan, Y. Chen, M. Zhou, Y. Wu, Y. Li, Inflammation and tumor progression: signaling pathways and targeted intervention, Signal Transduct, Targeted Ther. 6 (2021) 263. https://doi.org/10.1038/s41392-021-00658-5.

[7]

A. Leuti, D. Fazio, M. Fava, A. Piccoli, S. Oddi, M. Maccarrone, Bioactive lipids, inflammation and chronic diseases, Adv. Drug Deliv. Rev. 159 (2020) 133-169. https://doi.org/10.1016/j.addr.2020.06.028.

[8]

K. Megha, X. Joseph, V. Akhil, P. Mohanan, Cascade of immune mechanism and consequences of inflammatory disorders, Phytomedicine 91 (2021) 153712. https://doi.org/10.1146/annurev-immunol-061020-053734.

[9]

M.L. Meizlish, R.A. Franklin, X. Zhou, R. Medzhitov, Tissue homeostasis and inflammation, Annu. Rev. Immunol. 39 (2021) 557-581. https://doi.org/10.1146/annurev-immunol-061020-053734.

[10]

M.C. Church, J.L. Workman, T. Suganuma, Macrophages, Metabolites, and nucleosomes: chromatin at the intersection between aging and inflammation, Int. J. Mol. Sci. 22 (2021) 10274. https://doi.org/10.3390/ijms221910274.

[11]

T.M. Szabo, A. Frigy, E.E. Nagy, Targeting mediators of inflammation in heart failure: a short synthesis of experimental and clinical results, Int. J. Mol. Sci. 22 (2021) 13053. https://doi.org/10.3390/ijms222313053.

[12]

Ø. Bruserud, H.H. Aarstad, T.H.A. Tvedt, Combined C-reactive protein and novel inflammatory parameters as a predictor in cancer—what can we learn from the hematological experience? Cancers 12 (2020) 1966. https://doi.org/10.3390/cancers12071966.

[13]

I. Widyadharma, N.N.S.P. Sari, K.E. Pradnyaswari, K.T. Yuwana, I. Adikarya, C. Tertia, I. Wijayanti, I. Indrayani, D.K.I. Utami, Pain as clinical manifestations of COVID-19 infection and its management in the pandemic era: a literature review, Egypt, J. Neurol. Psychiatry Neurosurg 56 (2020) 1-8. https://doi.org/10.1186/s41983-020-00258-0.

[14]

Y. Jang, M. Kim, S.W. Hwang, Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception, J. Neuroinflammation 17 (2020) 1-27. https://doi.org/10.1186/s12974-020-1703-1.

[15]

G. FitzGerald, E. Ricciotti, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol. 31 (2011) 986-1000. https://doi.org/10.1161/ATVBAHA.110.207449.

[16]

J.D. Imig, Eicosanoid blood vessel regulation in physiological and pathological states, Clin. Sci. 134 (2020) 2707-2727. https://doi.org/10.1042/CS20191209.

[17]

S.M. Lucas, N.J. Rothwell, R.M. Gibson, The role of inflammation in CNS injury and disease, Br. J. Pharmacol. 147 (2006) S232-S240. https://doi.org/10.1038/sj.bjp.0706400.

[18]

R.K. Vishwakarma, D.S. Negi, The development of COX-1 and COX-2 inhibitors: a review, Int. J. Res. Pharm. Sci. 11 (2020) 3544. https://doi.org/10.13040/IJPSR.0975-8232.11(8).3544-55.

[19]

G. Varrassi, J.V. Pergolizzi, P. Dowling, A. Paladini, Ibuprofen safety at the golden anniversary: are all NSAIDs the same? A narrative review, Adv. Ther. 37 (2020) 61-82. https://doi.org/10.1007/s12325-019-01144-9.

[20]

M. Kujawska, A. Domanskyi, G. Kreiner, Common pathways linking neurodegenerative diseases—the role of inflammation, Front. Cell. Neurosci. 15 (2021) 754051. https://doi.org/10.3389/fncel.2021.754051.

[21]

D.-H. Tsai, M. Riediker, A. Berchet, F. Paccaud, G. Waeber, P. Vollenweider, M. Bochud, Effects of short-and long-term exposures to particulate matter on inflammatory marker levels in the general population, Environ. Sci. Pollut. Res. 26 (2019) 19697-19704. https://doi.org/10.1007/s11356-019-05194-y.

[22]

J. Stebbing, G. Sánchez Nievas, M. Falcone, S. Youhanna, P. Richardson, S. Ottaviani, J.X. Shen, C. Sommerauer, G. Tiseo, L. Ghiadoni, JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality, Sci. Adv. 7 (2021) eabe4724. https://doi.org/10.1126/sciadv.abe4724.

[23]

M.H. Jannah, A.A.S. Prottay, M.M. Chowdhury, M.B. Ahmed, M.M.U. Chowdhury, M.T. Islam, PRELIMINARY PHYTOCHEMICAL SCREENING AND BIOACTIVITY INVESTIGATIONS OF AVORRHEA CARAMBOLA L, Khulna University Studies, 2023, pp. 49-61.

[24]

M. Islam, A.A.S. Prottay, I. Sultana, A. Al Faruq, M.H. Bappi, M.S. Akbor, M.T. Islam, Phytochemical screening and evaluation of antioxidant, antiinflammatory, antimicrobial, and membrane-stabilizing activities of different fractional extracts of Grewia nervosa ( Lour.) Panigrahi, Food Biosci. 54 (2023) 102933. https://doi.org/10.1016/j.fbio.2023.102933.

[25]

J. Glynn, R. Bhikha, Herbal products and conventional drugs-an uneasy alliance, Bangladesh J. Medical Sci. 18 (2019) 24-29.

[26]

S.R. Lin, C.H. Chang, C.F. Hsu, M.J. Tsai, H. Cheng, M.K. Leong, P.J. Sung, J.C. Chen, C.F. Weng, Natural compounds as potential adjuvants to cancer therapy: preclinical evidence, Br. J. Pharmacol. 177 (2020) 1409-1423. https://doi.org/10.1111/bph.14816.

[27]

M. Kong, K. Xie, M. Lv, J. Li, J. Yao, K. Yan, X. Wu, Y. Xu, D. Ye, Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: lessons learned and future promise, Biomed. Pharmacother. 133 (2021) 110975. https://doi.org/10.1016/j.biopha.2020.11097.

[28]

R. Mehrandish, A. Rahimian, A. Shahriary, Heavy metals detoxification: a review of herbal compounds for chelation therapy in heavy metals toxicity, J. HerbMed Pharmacol. 8 (2019) 69-77. https://doi.org/10.15171/jhp.2019.12.

[29]

J.R. Brahmer, C. Lacchetti, B.J. Schneider, M.B. Atkins, K.J. Brassil, J.M. Caterino, I. Chau, M.S. Ernstoff, J.M. Gardner, P. Ginex, Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline, Clin. Oncol. 36 (2018) 1714-1768.

[30]

M. Abdel-Tawab, Considerations to be taken when carrying out medicinal plant research—what we learn from an insight into the IC50 values, bioavailability and clinical efficacy of exemplary anti-inflammatory herbal components, Pharmaceuticals 14 (2021) 437. https://doi.org/10.3390/ph14050437.

[31]

S.-W. Tsai, M.-C. Hsieh, S. Li, S.-C. Lin, S.-P. Wang, C.W. Lehman, C.Z. Lien, C.-C.- C. Lin, Therapeutic potential of sclareol in experimental models of rheumatoid arthritis, Int. J. Mol. Sci. 19 (2018) 1351. https://doi.org/10.3390/ijms19051351.

[32]

M.S. Qadirifard, Z. Arabpour, S. Afsahi, F. Sorkheh, S.N. Hamidpour, N. Ahangarzadeh, B. Dabestani, A. Ansari, N. Deravi, Sclareol and cancer prevention: a mini-review, OncoReview 11 (2021) 112-119. https://doi.org/10.24292/01.OR.124311221.

[33]

X. Li, Y. Wang, L. Li, S. Zhou, F. Zhao, Sclareol inhibits RANKL-induced osteoclastogenesis and promotes osteoblastogenesis through promoting CCN1 expression via repressing the MAPK pathway, Cell Biol. Toxicol. (2021) 1-23. https://doi.org/10.1007/s10565-020-09578-6.

[34]

J. Zhou, X. Xie, H. Tang, C. Peng, F. Peng, The bioactivities of sclareol: a mini review, Front. Pharmacol. 13 (2022). https://doi.org/10.3389/fphar.2022.1014105.

[35]

Y.-H. Hsieh, J.-S. Deng, H.-P. Pan, J.-C. Liao, S.-S. Huang, G.-J. Huang, Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling, Int. Immunopharmacol. 44 (2017) 16-25. https://doi.org/10.1016/j.intimp.2016.12.026.

[36]

A. Paradissis, S. Hatziantoniou, A. Georgopoulos, A.M.G. Psarra, K. Dimas, C. Demetzos, Liposomes modify the subcellular distribution of sclareol uptake by HCT- 116 cancer cell lines, Biomed. Pharmacother. 61 (2-3) (2007) 120-124. https://doi.org/10.1016/j.biopha.2006.10.006.

[37]

V. Popova, T. Ivanova, A. Stoyanova, V. Nikolova, T. Hristeva, V. Gochev, Y. Yonchev, N. Nikolov, V.D. Zheljazkov, Terpenoids in the essential oil and concen-trated aromatic products obtained from Nicotiana glutinosa L. leaves, Molecules 25 (1) (2019) 30. https://doi.org/10.3390/molecules25010030.

[38]

H. Wang, M. Xie, G. Rizzi, X. Li, K. Tan, M. Fussenegger, Identification of sclareol as a natural neuroprotective Cav1. 3-Antagonist using synthetic Parkinsonmimetic gene circuits and computer-aided drug discovery, Adv. Sci. 9 (7) (2022) 2102855. https://doi.org/10.1002/advs.202102855.

[39]

A.D. Aydın, F. Altınel, H. Erdogmuş, Ç.D. Son,Allergen fragrance molecules: a potential relief for COVID-19, BMC Complement. Med. Ther. 21 (1) (2021) 1-14. https://doi.org/10.1186/s12906-021-03214-4.

[40]

S. Ravera, A. Esposito, P. Degan, F. Caicci, D. Calzia, E. Perrotta, L. Manni, A. Bisio, V. Iobbi, A. Schito, C.E. Traverso, Sclareol modulates free radical production in the retinal rod outer segment by inhibiting the ectopic f1fo-atp synthase, Free Radic. Biol. Med. 160 (2020) 368-375. https://doi.org/10.1016/j.freeradbiomed.2020.08.014.

[41]

J. Jennifer Wong, Y.-F. Chiang, Y.-H. Shih, C.-H. Chiu, H.-Y. Chen, T.-M. Shieh, K.-K.- L. Wang, T.-C. Huang, Y.-H. Hong, S.-M. Hsia, Salvia sclarea L. Essential oil extract and its antioxidative phytochemical sclareol inhibit oxytocin-induced uterine hypercontraction dysmenorrhea model by inhibiting the Ca2t-MLCK-MLC20 signaling cascade: an ex vivo and in vivo study, Antioxidants 9 (10) (2020) 991. https://doi.org/10.3390/antiox9100991.

[42]

Y.H. Hsieh, J.S. Deng, H.P. Pan, J.C. Liao, S.S. Huang, G.J. Huang, Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling, Int. Immunopharm. 44 (2017) 16-25.

[43]

M.H. Bappi, A.A.S. Prottay, K. Al-Khafaji, M.S. Akbor, M.K. Hossain, M.S. Islam, M.T. Islam, Antiemetic effects of sclareol, possibly through 5-HT3 and D2 receptor interaction pathways: in-vivo and in-silico studies, Food Chem. Toxicol. 181 (2023) 114068. https://doi.org/10.1016/j.fct.2023.114068.

[44]

M.S. Bhuia, T. Islam, M. Rokonuzzman, A.A. Shamsh Prottay, F. Akter, M.I. Hossain, Islam, Modulatory effects of phytol on the antiemetic property of domperidone, possibly through the D2 receptor interaction pathway: in vivo and in silico studies, 3, Biotech 13 (4) (2023) 116. https://doi.org/10.1007/s13205-023-03520-3.

[45]

UniProt Consortium, UniProt, A worldwide hub of protein knowledge, Nucleic Acids Res 47 (2019) D506-D515. https://doi.org/10.1093/nar/gky1049.

[46]

X. Gu, Y. Wang, H. Wang, H. Wu, W. Li, J. Wang, N. Li, Homology modeling, molecular dynamics and virtual screening of endothelin-A receptor for the treatment of pulmonary arterial hypertension, J. Biomol. Struct. Dyn. 39 (11) (2021) 3912-3923. https://doi.org/10.1080/07391102.2020.1772106.

[47]

M.N. Mia, S.Z. Smrity, M.H. Bappi, H. Kamli, T. Islam, A.A.S. Prottay, Islam, Anxiolytic-like effect of succinic acid: a possible GABAergic intervention, Food Biosci 55 (2023) 103044. https://doi.org/10.1016/j.fbio.2023.103044.

[48]

O.V. Sobolev, P.V. Afonine, N.W. Moriarty, M.L. Hekkelman, R.P. Joosten, A. Perrakis, P.D. Adams, A global Ramachandran score identifies protein structures with unlikely stereochemistry, Structure 28 (2020) 1249-1258, e1242, https://doi.org/10.1016/j.str.2020.08.005.

[49]

D.K. Yadav, D. Shukla, N. Tuteja, Rice heterotrimeric G-protein alpha subunit (RGA1): in silico analysis of the gene and promoter and its upregulation under abiotic stress, Plant Physiol. Biochem. 63 (2013) 262-271. https://doi.org/10.1016/j.plaphy.2012.11.031.

[50]

M.S. Islam, R. Hossain, T. Ahmed, M.M. Rahaman, K. Al-Khafaji, R.A. Khan, M.T. Islam, Anxiolytic-like effect of quercetin possibly through GABA receptor interaction pathway: in vivo and in silico studies, Molecules 27 (2022) 7149. https://doi.org/10.3390/molecules27217149.

[51]

H. Kamli, M.H. Bappi, T. Islam, R. Hossain, M.M. Hossen, A. Faruq, Antioxidant, anti-inflammatory, and anxiolytic-like effects of urena sinuata L.: in vitro, in vivo, and in silico studies, J. Biol. Regul. Homeost. Agents 37 (2023) 5035-5052. http://dx.doi.org/10.23812/j.biol.regul.homeost.agents.20233709.489.

[52]

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, PubChem 2023 update, Nucleic Acids Res. 51 (2023) D1373-D1380. https://doi.org/10.1093/nar/gkac956.

[53]

M.H. Bappi, A.A.S. Prottay, H. Kamli, F.A. Sonia, M.N. Mia, M.S. Akbor, M.T. Islam, Quercetin antagonizes the sedative effects of linalool, possibly through the GABAergic interaction pathway, Molecules 28 (14) (2023) 5616. https://doi. org/10.3390/molecules28145616.

[54]

S. Kaliamurthi, G. Selvaraj, C. Selvaraj, S.K. Singh, D.-Q. Wei, G.H. Peslherbe, Structure-based virtual screening reveals ibrutinib and zanubrutinib as potential repurposed drugs against COVID-19, Int. J. Mol. Sci. 22 (2021) 7071. https://doi.org/10.3390/ijms22137071.

[55]

O. Trott, A.J. Olson, AutoDock Vina, Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461.

[56]

H. Kamli, A. Shaikh, M.H. Bappi, A. Raposo, M.F. Ahmad, F.A. Sonia, M.T. Islam, Sclareol exerts synergistic antidepressant effects with quercetin and caffeine, possibly suppressing GABAergic transmission in chicks, Biomed. Pharmacother. 168 (2023) 115768. https://doi.org/10.1016/j.biopha.2023.115768.

[57]

M.T. Islam, M.H. Bappi, T. Islam, A.A.S. Prottay, S. Akbor, N. Mia, Toxicology of rabeprazole: a literature survey and an in silico study, Kariri Sci. CECAPE Biol. Health J. 1 (2023) 1-6. http://dx.doi.org/10.29327/2256856.2023.1-6.

[58]

K.A. Azzam, SwissADME and pkCSM webservers predictors: an integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives, K.I.M.S. 325 (2023) 14-21. https://doi.org/10.31643/2023/6445.13.

[59]

P. Banerjee, A.O. Eckert, A.K. Schrey, R. J.N.a.r. ProTox Preissner II, A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res 46 (2018) W257-W263. https://doi.org/10.1093/nar/gky318.

[60]

A.A. Saldanha, L. Vieira, R.I.M. de Azambuja Ribeiro, R.G. Thomé, H.B. Dos Santos, D.B. Silva, A.C. Soares, Chemical composition and evaluation of the antiinflammatory and antinociceptive activities of Duguetia furfuracea essential oil: effect on edema, leukocyte recruitment, tumor necrosis factor alpha production, iNOS expression, and adenosinergic and opioidergic systems, J. Ethnopharmacol. 231 (2019) 325-336. https://doi.org/10.1016/j.jep.2018.11.017.

[61]

T. Yimer, E.M. Birru, M. Adugna, M. Geta, Y.K. Emiru, Evaluation of analgesic and anti-inflammatory activities of 80% methanol root extract of Echinops kebericho M.( Asteraceae), J. Inflamm. Res. (2020) 647-658.

[62]

L. Rozano, Y.M. Mukuka, J.K. Hane, R.L. Mancera, Ab initio modelling of the structure of ToxA-like and MAX fungal effector proteins, Int. J. Mol. Sci. 24 (2023) 6262. https://doi.org/10.3390/ijms24076262.

[63]

M.T. Muhammed, E. Aki-Yalcin, Homology modeling in drug discovery: overview, current applications, and future perspectives, Chem. Biol. Drug Des. 93 (2019) 12-20. https://doi.org/10.1111/cbdd.13388.

[64]

A. Sahay, A. Piprodhe, M. Pise, In silico analysis and homology modeling of strictosidine synthase involved in alkaloid biosynthesis in catharanthus roseus, J. Genet. Eng. Biotechnol. 18 (2020) 1-6. https://doi.org/10.1186/s43141-020-00049-3.

[65]

K. Chandran, D.I. Shane, A. Zochedh, A.B. Sultan, T. Kathiresan, Docking simulation and ADMET prediction based investigation on the phytochemical constituents of Noni (Morinda citrifolia) fruit as a potential anticancer drug, Silico Pharmacol 10 (2022) 14. https://doi.org/10.1007/s40203-022-00130-4.

[66]

V. Kairys, L. Baranauskiene, M. Kazlauskiene, D. Matulis, E. Kazlauskas, Binding affinity in drug design: experimental and computational techniques, Expet Opin. Drug Discov. 14 (8) (2019) 755-768.

[67]

M. Segal, F.J. Slack, Challenges identifying efficacious miRNA therapeutics for cancer, Expet Opin. Drug Discov. 15 (9) (2020) 987-991.

[68]

M.H. Bappi, A.A.S. Prottay, K. Al-Khafaji, M.S. Akbor, M.K. Hossain, M.S. Islam, M.T. Islam, Antiemetic effects of sclareol, possibly through 5-HT3 and D2 receptor interaction pathways: in-vivo and in-silico studies, Food Chem. Toxicol. 181 (2023) 114068. https://doi.org/10.1016/j.fct.2023.114068.

[69]

P.W. Anggini, S.A. Amanina, S.R. Asyura, R. Dion, In silico study of essential oil of bambusa vulgaris leaves as an anti beta-lactamase compound, Mol. Cell Biol. 6 (2022) 147-154, https://doi.org/10.21705/mcbs.v6i3.278.

[70]

D. Furman, J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, Chronic inflammation in the etiology of disease across the life span, Nat. Med. 25 (2019) 1822-1832, https://doi.org/10.1038/s41591-019-0675-0.

[71]

D. Placha, J. Jampilek, Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems, Pharmaceutics 13 (2021) 64. https://doi.org/10.3390/pharmaceutics13010064.

[72]

K. Prame Kumar, A.J. Nicholls, C.H. Wong, Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease, Cell Tissue Res 371 (2018) 551-565. https://doi.org/10.1007/s00441-017-2753-2.

[73]

T.S. Xiao, Innate immunity and inflammation, Cell. Mol. Immunol. 14 (2017) 1-3. https://doi.org/10.1038/cmi.2016.45.

[74]

M. Camba-Gómez, O. Gualillo, J. Conde-Aranda, New perspectives in the study of intestinal inflammation: focus on the resolution of inflammation, Int. J. Mol. Sci. 22 (2021) 2605. https://doi.org/10.3390/ijms22052605.

[75]

X. Yu, H.J. Seow, H. Wang, D. Anthony, S. Bozinovski, L. Lin, J.-M. Ye, R. Vlahos, Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis, Clin. Sci. 133 (2019) 551-564. https://doi.org/10.1042/CS20180912.

[76]

J.R. Nakkala, Z. Li, W. Ahmad, K. Wang, C. Gao, Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases, Acta Biomater 123 (2021) 1-30. https://doi.org/10.1016/j.actbio.2021.01.025.

[77]

B. Wang, L. Wu, J. Chen, L. Dong, C. Chen, Z. Wen, J. Hu, I. Fleming, D.W. Wang, Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets, Signal Transduct. Targeted Ther. 6 (2021) 94. https://doi.org/10.1038/s41392-020-00443-w.

[78]

K. Stachowicz,Application potential of modulation of cyclooxygenase-2 activity: a cognitive approach, Postepy Hig. Med. Dosw. 75 (2021) 837-846. https://doi.org/10.2478/ahem-2021-0022.

[79]

G.P. Nagaraju, B.F. El-Rayes, Cyclooxygenase-2 in gastrointestinal malignancies, Cancer 125 (2019) 1221-1227. https://doi.org/10.1002/cncr.32010.

[80]

B. Wu, Q.H. Sodji, A.K.J.C. Oyelere, Inflammation, fibrosis and cancer: mechanisms, therapeutic options and challenges, Cancers 14 (2022) 552. https://doi.org/10.3390/cancers14030552.

[81]

Y. Zhou, H. Khan, J. Xiao, W.S. Cheang, Effects of arachidonic acid metabolites on cardiovascular health and disease, Int. J. Mol. Sci. 22 (2021) 12029. https://doi.org/10.3390/ijms222112029.

[82]

T. Macedo, F. Ferreres, D.M. Pereira, A.P. Oliveira, N.G. Gomes, á. Gil-Izquierdo, P. Valentão, L. Araújo, P.B. Andrade, Cassia sieberiana DC. leaves modulate LPSinduced inflammatory response in THP-1 cells and inhibit eicosanoidmetabolizing enzymes, J. Ethnopharmacol. 269 (2021) 113746. https://doi. org/10.1016/j.jep.2020.113746.

[83]

E.M. Smyth, T. Grosser, M. Wang, Y. Yu, G.A. FitzGerald, Prostanoids in health and disease, J. Lipid Res. 50 (2009) S423-S428. https://doi.org/10.1194/jlr.R800094-JLR200.

[84]

S.K. Lee, Sex as an important biological variable in biomedical research, BMB Rep 51 (2018) 167. https://doi.org/10.5483/BMBRep.2018.51.4.034.

[85]

T.J. Coderre, A. Laferriére, The emergence of animal models of chronic pain and logistical and methodological issues concerning their use, J. Neural. Transm. 127 (2020) 393-406. https://doi.org/10.1007/s00702-019-02103-y.

[86]

L. Zhang, Y. Li, L. Wang, S. Zhang, G. Zhang, M. Zuo, W. Shi, B. Cong, A fatal case of accidental oral formaldehyde poisoning and its pathomorphological characteristics, Int. J. Leg. Med. 136 (2022) 1303-1307. https://doi.org/10.1007/s00414-022-02821-1.

[87]

E.F. Bello, A.I. Ezeteonu, U. Vincent, In vitro therapeutic potential of leaf extract of Eugenia uniflora Linn on acute-inflammation rat model, JDMP 6 (2020) 31-38. http://dx.doi.org/10.11648/j.jdmp.20200602.11.

[88]

K.Y. Fu, A.R. Light, W. Maixner, Long-lasting inflammation and long-term hyperalgesia after subcutaneous formalin injection into the rat hindpaw, J. Pain 2 (2001) 2-11. https://doi.org/10.1054/jpai.2001.9804.

[89]

B.O. Oladokun, O.N. Omisore, O.A. Osukoya, A. Kuku, Anti-nociceptive and antiinflammatory activities of Tetracarpidium conophorum seed lectin, Sci. Afr. 3 (2019) e00073. https://doi.org/10.1016/j.sciaf.2019.e00073.

[90]

N. Karim, I. Khan, W. Khan, I. Khan, A. Khan, S.A. Halim, H. Khan, J. Hussain, A. Al-Harrasi, Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: an invitro, in-vivo, and in-silico approach, Front. Immunol. 10 (2019) 581. https://doi.org/10.3389/fimmu.2019.00581.

[91]

L. McNally, Z. Bhagwagar, J. Hannestad, Inflammation, glutamate, and glia in depression: a literature review, CNS spt 13 (2008) 501-510. https://doi.org/10.1017/S1092852900016734.

[92]

E. Haroon, A.H. Miller, G. Sanacora, Inflammation, glutamate, and glia: a trio of trouble in mood disorders, Neu. Pharmacol. 42 (2017) 193-215. https://doi.org/10.1038/npp.2016.199.

[93]

J. Zhou, Y. Geng, T. Su, Q. Wang, Y. Ren, J. Zhao, C. Fu, M. Weber, H. Lin, J.S. Kaminker, N. Liu, M. Sheng, Y. Chen, NMDA receptor-dependent prostaglandin-endoperoxide synthase 2 induction in neurons promotes glial proliferation during brain development and injury, Cell Rep 38 (2022) 110557. https://doi.org/10.1016/j.celrep.2022.110557.

[94]

H.-L. Yuan, Y.-L. Zhao, C.-F. Ding, P.-F. Zhu, Q. Jin, Y.-P. Liu, Z.-T. Ding, X.-D. Luo, Anti-inflammatory and antinociceptive effects of Curcuma kwangsiensis and its bioactive terpenoids in vivo and in vitro, J. Ethnopharmacol. 259 (2020) 112935. https://doi.org/10.1016/j.jep.2020.112935.

[95]

J. Rodríguez-Silverio, M.E. Sánchez-Mendoza, H.I. Rocha-González, J.G. Reyes- García, F.J. Flores-Murrieta, Y. López-Lorenzo, G.N. Quiñonez-Bastidas, J. Arrieta, Evaluation of the antinociceptive, antiallodynic, antihyperalgesic and antiinflammatory effect of polyalthic acid, Molecules 26 (2021) 2921. https://doi. org/10.3390/molecules26102921.

[96]

G.-J. Huang, C.-H. Pan, C.-H. Wu, Sclareol exhibits anti-inflammatory activity in both lipopolysaccharide-stimulated macrophages and the λ-carrageenan-induced paw edema model, J. Nat. Prod. 75 (2012) 54-59. https://doi.org/10.1021/np200512a.

[97]

X. Zhou, S.W. Seto, D. Chang, H. Kiat, V. Razmovski-Naumovski, K. Chan, A. Bensoussan, Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research, Front. Pharmacol. 7 (2016) 201. https://doi.org/10.3389/fphar.2016.00201.

[98]

R. Gupta, D. Srivastava, M. Sahu, S. Tiwari, R.K. Ambasta, P. Kumar, Artificial intelligence to deep learning: machine intelligence approach for drug discovery, Mol. Divers. 25 (2021) 1315-1360. https://doi.org/10.1007/s11030-021-10217-3.

[99]

D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, R.K. Tekade, Artificial intelligence in drug discovery and development, Drug Discov. Today 26 (2021) 80. http://dx.doi.org/10.4172/2329-6887.1000e173.

[100]

S. Brogi, T.C. Ramalho, K. Kuca, J.L. Medina-Franco, M. Valko, In silico methods for drug design and discovery, Front. Chem. 8 (2020) 612. https://doi.org/10.3389/fchem.2020.00612.

[101]

P.C. Wu, W.H. Chuo, S.C. Lin, C.W. Lehman, C.Z. Lien, C.S. Wu, C.C. Lin, Sclareol attenuates the development of atopic dermatitis induced by 2, 4-dinitrochlorobenzene in mice, Immunopharmacol. Immunotoxicol. 41 (1) (2019) 109-116.

[102]

S.W. Tsai, M.C. Hsieh, S. Li, S.C. Lin, S.P. Wang, C.W. Lehman, C.C. Lin, Therapeutic potential of sclareol in experimental models of rheumatoid arthritis, Int. J. Mol. Sci. 19 (5) (2018) 1351. https://doi.org/10.3390/ijms19051351.

[103]

B. Wang, L. Wu, J. Chen, L. Dong, C. Chen, Z. Wen, D.W. Wang, Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets, Signal Transduct. Targeted Ther. 6 (1) (2021) 94. https://doi.org/10.1038/s41392-020-00443-w.

[104]

S. Khan, K.L. Andrews, J.P. Chin-Dusting, Cyclo-oxygenase (COX) inhibitors and cardiovascular risk: are non-steroidal anti-inflammatory drugs really antiinflammatory? Int. J. Mol. Sci. 20 (17) (2019) 4262. https://doi.org/10.3390/ijms20174262.

[105]

N.S. Yarla, A. Bishayee, G. Sethi, P. Reddanna, A.M. Kalle, B.L. Dhananjaya, G.R. Duddukuri, Targeting arachidonic acid pathway by natural products for cancer prevention and therapy, Semin. Cancer Biol. 40 (2016, October) 48-81. Academic Press, https://doi.org/10.1016/j.semcancer.2016.02.001.

[106]

T. Zhang, D. Liu, D. Tian, L. Xia, The roles of nausea and vomiting in COVID-19: did we miss something? J. Microbiol. Immunol. Infect. 54 (4) (2021) 541-546. https://doi.org/10.1016/j.jmii.2020.10.005

[107]

V. Sharma, P. Bhatia, O. Alam, M.J. Naim, F. Nawaz, A.A. Sheikh, M. Jha,Recent advancement in the discovery and development of COX-2 inhibitors: insight into biological activities and SAR studies (2008-2019), Bioorg. Chem. 89 (2019) 103007. https://doi.org/10.1016/j.bioorg.2019.103007.

[108]

P.C. Wu, W.H. Chuo, S.C. Lin, C.W. Lehman, C.Z. Lien, C.S. Wu, C.C. Lin, Sclareol attenuates the development of atopic dermatitis induced by 2, 4-dinitrochlorobenzene in mice, Immunopharmacol. Immunotoxicol. 41 (1) (2019) 109-116.

AI Summary AI Mindmap
PDF (2425KB)

331

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/