Grafted tamarind kernel polysaccharide based Al3+ cross-linked hydrogel matrices for sustained release of drug in the gastrointestinal milieu

Arpita Saha , Kaushik Mukherjee , Bijaya Ghosh , Tapan Kumar Giri

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100022

PDF (1910KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100022 DOI: 10.1016/j.pscia.2023.100022
Research Article
research-article

Grafted tamarind kernel polysaccharide based Al3+ cross-linked hydrogel matrices for sustained release of drug in the gastrointestinal milieu

Author information +
History +
PDF (1910KB)

Abstract

Ionically cross-linked hydrogel serves as an excellent matrix material for the sustained delivery of drugs. Tablets prepared with tamarind kernel polysaccharide (TKP) as the sole matrix material could not provide sustained release of the incorporated drugs. The purpose of the work was to modify TKP and development of ionically cross-linked hydrogel matrix tablets for sustained drug delivery. Grafting of TKP was performed with methacrylic acid (MAA) following the free radical polymerization technique. Hydrogel matrix tablets using Al3+ ion cross-linked grafted TKP were prepared by direct compression method. Al3+ ions were found to considerably influence the erosion, swelling, and paracetamol release from the matrix tablet. Retardation of the erosion, swelling, and paracetamol release was observed with increasing the concentration of Al3+ ions. The hydrogel matrix tablets showed a slow release of drugs in an acidic medium and a relatively faster drug release in an alkaline medium. The optimized formulation having a co-polymer/aluminium hydroxide (Al(OH)3) ratio of 1:1, exhibited sustained drug release action for more than 10 h with lower swelling and erosion of the gel matrix. We conclude that Al3+ ion cross-linked grafted TKP is an excellent matrix material for sustained delivery of drugs in the gastrointestinal milieu.

Keywords

Tamarind kernel polysaccharide / Cross-linked / Grafting / Methacrylic acid / Hydrogel

Cite this article

Download citation ▾
Arpita Saha, Kaushik Mukherjee, Bijaya Ghosh, Tapan Kumar Giri. Grafted tamarind kernel polysaccharide based Al3+ cross-linked hydrogel matrices for sustained release of drug in the gastrointestinal milieu. Pharmaceutical Science Advances, 2024, 2(1): 100022 DOI:10.1016/j.pscia.2023.100022

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

Arpita Saha: Conceptualization, Methodology, Data Curation, Writing - Original Draft.

Kaushik Mukherjee: Conceptualization, Data Curation, Writing - Original Draft.

Bijaya Ghosh: Writing - Review & Editing.

Tapan Kumar Giri: Writing - Review & Editing, Supervision.

All the authors have read and approved the final manuscript.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

Not applicable.

Declaration of competing interest

No conflict of interest, financial or otherwise.

Acknowledgment

The author acknowledges Hindustan Gum Ltd. for supplying tamarind kernel powder as a gift sample.

References

[1]

T.K. Giri, B. Dey, S. Maity, Preparation and characterization of nanoemulsome entrapped in enteric coated hydrogel beads for the controlled delivery of capsaicin to the colon, Curr. Drug Ther. 13 (2018) 98-105. https://doi.org/10.2174/1574885512666171107151526.

[2]

T.K. Giri, D. Verma, H.R. Badwaik, Effect of aluminium chloride concentration on diltiazem hydrochloride release from pH-sensitive hydrogel beads composed of hydrolyzed grafted k-carrageenan and sodium alginate, Curr. Chem. Biol. 11 (2017) 44-49. https://doi.org/10.2174/2212796810666161108152612.

[3]

T. Thambi, Y. Li, D.S. Lee, Injectable hydrogels for sustained release of therapeutic agents, J. Contr. Release 267 (2017) 57-66. https://doi.org/10.1016/j.jconrel.2017.08.006.

[4]

K. Mukherjee, P. Dutta, H.R. Badwaik, A. Saha, A. Das, T.K. Giri, Food industry applications of Tara gum and its modified forms, Food Hydrocolloids for Health 3 (2023) 100107. https://doi.org/10.1016/j.fhfh.2022.100107.

[5]

A. Behra, T.K. Giri, D.K. Tripathi, Ajazuddin, A. Alexander, An exhaustive review on recent advancement in pharmaceutical bioadhesive used for systemic drug delivery through oral mucosa for achieving maximum pharmacological response and effect, Int. J. Pharmacol. 8 (2012) 283-305.

[6]

A. Ali, M.A. Hussain, M.T. Haseeb, S.N.A. Bukhari, G. Muhammad, F.A. Sheikh, M. Farid-ul-Haq, N. Ahmad, A smart hydrogel from Salvia spinosa seeds: pH responsiveness, on-off switching, sustained drug release, and transit detection, Curr. Drug Deliv. 20 (2023) 292-305. https://doi.org/10.2174/1567201819666220509200019.

[7]

C.M. Setty, A.S. Deshmukh, A.M. Badiger, Hydrolyzed polyacrylamide grafted carboxymethylxyloglucan based microbeads for pH responsive drug delivery, Int. J. Biol. Macromol. 67 (2014) 28-36. https://doi.org/10.1016/j.ijbiomac.2014.03.005.

[8]

S. Kumar, R.K. Majhi, S. Sanyasi, C. Goswami, L. Goswami, Acrylic acid grafted tamarind kernel polysaccharide-based hydrogel for bone tissue engineering in absence of any osteoinducing factors, Connect. Tissue, Res. 59 (2018) 111-121. https://doi.org/10.1080/03008207.2018.1442444.

[9]

A.K. Nayak, D. Pal, Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology, Int. J. Biol. Macromol. 49 (2011) 784-793. https://doi.org/10.1016/j.ijbiomac.2011.07.013.

[10]

K.K. Mali, S.C. Dhawale, Design and optimization of modified tamarind gum-based floating-bioadhesive tablets of verapamil hydrochloride, Asian J. Pharm. 10 (2016) 239-250. http://dx.doi.org/10.22377/ajp.v10i04.862.

[11]

S. Pal, S. Ghosh, G. Sen, U. Jha, R.P. Singh, Cationic tamarind kernel polysaccharide (Cat TKP): a novel polymeric flocculant for the treatment of textile industry wastewater, Int. J. Biol. Macromol. 45 (2009) 518-523. https://doi.org/10.1016/j.ijbiomac.2009.08.004.

[12]

G. Kaur, M. Mahajan, P. Bassi, Derivatized polysaccharides: preparation, characterization, and application as bioadhesive polymer for drug delivery, Int. J. Polym. Mater. 62 (2013) 75-481. https://doi.org/10.1080/00914037.2012.734348.

[13]

J. Garner, K. Park, Chemically modified natural polysaccharides to form gels, Polysaccharides 31 (2015) 1555-1582. https://doi.org/10.1007/978-3-319-03751-6_31-1.

[14]

H. Kaur, S. Yadav, M. Ahuja, N. Dilbaghi, Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer, Carbohydr. Polym. 90 (2012) 1543-1549. https://doi.org/10.1016/j.carbpol.2012.07.028.

[15]

D. Dev, D.K. Rehal, D.N. Prasad, Preparation and evaluation of modified tamarind seed gum as a novel superdisintegrant, J. Drug Deliv. Therapeut. 8 (2018) 372-377. https://doi.org/10.22270/jddt.v8i5-s.1994.

[16]

C.K. Simi, T.E. Abraham, Physico chemical properties of aminated tamarind xyloglucan, Colloids Surf. B Biointerfaces 81 (2010) 513-520. https://doi.org/10.1016/j.colsurfb.2010.07.051.

[17]

A. Mishra, A.V. Malhotra, Graft copolymers of xyloglucan and methyl methacrylate, Carbohydr. Polym. 87 (2012) 1899-1904. https://doi.org/10.1016/j.carbpol.2011.09.068.

[18]

T.K. Giri, A. Thakur, D.K. Tripathi, Biodegradable hydrogel bead of casein and modified xanthan gum for controlled delivery of theophylline, Curr. Drug Ther. 11 (2016) 150-162.

[19]

T.K. Giri, Breaking the barrier of cancer through liposome loaded with phytochemicals, Curr. Drug Deliv. 16 (2019) 3-17. https://doi.org/10.2174/1567201815666180918112139.

[20]

A. Ali, M.T. Haseeb, M.A. Hussain, U.R. Tulain, G. Muhammad, I. Azhar, S.Z. Hussain, I. Hussain, N. Ahmad, A pH responsive and superporous biocomposite hydrogel of Salvia spinosa polysaccharide-co-methacrylic acid for intelligent drug delivery, RSC Adv 13 (2023) 4932-4948. https://doi.org/10.1039/D2RA05240G.

[21]

A. Ali, M.A. Hussain, M.T. Haseeb, U.R. Tulain, M. Farid-ul-Haq, T. Tabassum, G. Muhammad, S.Z. Hussain, I. Hussain, A. Erum, Synthesis, characterization, and acute toxicity of pH-responsive Salvia spinosa mucilage-co-acrylic acid hydrogel: a smart excipient for drug release applications, React. Funct. Polym. 182 (2023) 105466. https://doi.org/10.1016/j.reactfunctpolym.2022.105466.

[22]

P. Dutta, K. Mukherjee, A. Saha, A. Das, H.R. Badwaik, T.K. Giri, Colonic delivery of surface charge decorated nanocarrier for IBD therapy, J. Drug Deliv. Sci. Technol. 76 (2022) 103754. https://doi.org/10.1016/j.jddst.2022.103754.

[23]

K. Mukherjee, S. Chakraborty, B. Sa, Quick/slow biphasic release of a poorly water soluble antidiabetic drug from bi-layer tablets, Int. J. Pharm. Pharmaceut. Sci. 7 (2015) 250-258.

[24]

K. Mukherjee, P. Dutta, T.K. Giri, Al3+/Ca2+ cross-linked hydrogel matrix tablet of etherified tara gum for sustained delivery of tramadol hydrochloride in gastrointestinal milieu, Int. J. Biol. Macromol. 232 (2023) 123448. https://doi.org/10.1016/j.ijbiomac.2023.123448.

[25]

T.K. Giri, D. Thakur, A. Alexander, Ajazuddin, H. Badwaik, D.K. Tripathi, Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications, Curr. Drug Deliv. 9 (2012) 539-555, https://doi.org/10.2174/156720112803529800.

[26]

S.N.A. Bukhari, M.A. Hussain, M.T. Haseeb, A. Wahid, N. Ahmad, S.Z. Hussain, R.N. Paracha, M.U. Munir, M.A. Elsherif, Metal complexation of arabinoxylan engenders a smart material offering pH, solvents, and salt responsive on-off swelling with the potential for sustained drug delivery, Gels 8 (2022) 283. https://doi.org/10.3390/gels8050283.

[27]

R. Ray, S. Maity, S. Mandal, T.K. Chatterjee, B. Sa, Studies on the release of ibuprofen from Al3+ ion cross-linked homopolymeric and interpenetrating network hydrogel beads of carboxymethyl xanthan and sodium alginate, Adv. Polym. Technol. 30 (2010) 1-11. https://doi.org/10.1002/adv.20199.

[28]

T. Kundu, K. Mukherjee, B. Sa, Hydrogel beads composed of sodium carboxymethyl xanthan and sodium carboxymethyl cellulose for controlled release of aceclofenac: effect of formulation variables, Res. J. Pharm. Technol. 5 (1) (2012) 103-113.

[29]

M. Ahmed, R.P. Enever, Formulation and evaluation of sustained release paracetamol tablets, J. Clin. Pharm. Therapeut. 6 (1981) 27-38. https://doi.org/10.1111/j.1365-2710.1981.tb00884.x.

[30]

S. Mandal, R. Ray, S.K. Basu, B. Sa, Evaluation of a matrix tablet prepared with polyacrylamide-g-sodium alginate copolymers and their partially hydrolyzed copolymers for sustained release of diltiazem hydrochloride, J. Biomater. Sci. Polym. Ed. 21 (2010)1799- 1814. https://doi.org/10.1163/092050609X12567183711214.

[31]

H. Boyapally, R.K. Nukala, D. Douroumis, Development and release mechanism of diltiazem HCl prolonged release matrix tablets, Drug Deliv. 16 (2009) 67-74.

[32]

D. Bhowmik, H. Gopinath, B.P. Kumar, S. Duraivel, K.P.S. Kumar, Controlled release drug delivery systems, J. Pharm. Innov. 1 (2012) 24-32.

[33]

R.K. Mamidala, V. Ramana, G. Sandeep, M. Lingam, R. Gannu, M.R. Yamsani, Factors influencing the design and performance of oral sustained/controlled release dosage forms, Int. J. Pharm. Sci. Nanotech. 2 (2009) 583-594. http://dx.doi.org/10.37285/ijpsn.2009.2.3.1.

[34]

S. Pal, S. Ghorai, M.K. Dash, S. Ghosh, G. Udayabhanu, Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method, J. Hazard Mater. 192 (2011) 1580-1588. https://doi.org/10.1016/j.jhazmat.2011.06.083.

[35]

L. Kalantzi, C. Reppas, J.B. Dressman, G.L. Amidon, H.E. Junginger, K.K. Midha, V.P. Shah, S.A. Stavchansky, D.M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: acetaminophen (paracetamol), J. Pharmaceut. Sci. 95 (2016) 4-14. https://doi.org/10.1002/jps.20477.

[36]

R.A. Granberg, A.C. Rasmuson, Solubility of paracetamol in pure solvents, J. Chem. Eng. Data 44 (1999) 1391-1395. https://doi.org/10.1021/je990124v.

[37]

R.A. Granberg, A.C. Rasmuson, Solubility of paracetamol in binary and ternary mixtures of water + acetone + toluene, J. Chem. Eng. Data 45 (2000) 478-483. https://doi.org/10.1021/je990272l.

[38]

E.S. Rufino, E.E.C. Monteiro, Infrared study on methyl methacrylate -methacrylic acid copolymers and their sodium salts, Polymers 44 (2003) 7189-7198. https://doi.org/10.1016/j.polymer.2003.08.041.

[39]

T.K. Giri, D. Verma, D.K. Tripathi, Effect of adsorption parameters on biosorption of Pbtt ions from aqueous solution by poly (acrylamide)-grafted kappa-carrageenan, Polym. Bull. 72 (2015) 1625-1646. https://doi.org/10.1007/s00289-015-1357-9.

[40]

R. Singh, S. Maity, B. Sa, Effect of ionic crosslink on the release of metronidazole from partially carboxymethylated guar gum tablet, Carbohydr. Polym. 106 (2014) 414-421. https://doi.org/10.1016/j.carbpol.2014.01.033.

[41]

S. Maity, B. Sa, Compression-coated tablet for colon targeting: impact of coating and core materials on drug release, AAPS, Pharm. Sci. Tech. 17 (2015) 504-515. https://doi.org/10.1208/s12249-015-0359-0.

[42]

R.C. Mundargi, S.A. Agnihotri, S.A. Patil, T.M. Aminabhavi, Graft copolymerization of methacrylic acid onto guar gum, using potassium persulfate as an initiator, J. Appl. Polym. Sci. 101 (2006) 618-623. https://doi.org/10.1002/app.23325.

[43]

J.F. Mukerabigwi, S. Lei, H. Wang, S. Luo, X. Ma, J. Qin, X. Huang, Y. Cao, Synthesis and properties of a novel ecofriendly superabsorbent hydrogel nanocomposite based on xyloglucan-graft-poly (acrylic acid)/diatomite, J. Polym. Environ. 5 (2015) 83732-83742. https://doi.org/10.1039/C5RA12355K.

[44]

M. Chintha, S.R. Obireddy, P. Areti, S.M.C. Subbarao, C.R. Kashayi, J.K. Rapoli, Sodium alginate/locust bean gum-g-methacrylic acid IPN hydrogels for “simvastatin” drug delivery, J. Dispersion Sci. Technol. 41 (2020) 2192-2202. https://doi.org/10.1080/01932691.2019.1677247.

[45]

K. Behari, P.K. Pandey, R. Kumar, K. Taunk, Graft copolymerization of acrylamide onto xanthan gum, Carbohydr. Polym. 46 (2001) 185-189. https://doi.org/10.1016/S0144-8617(00)00291-5.

[46]

F. Soleimani, M. Sadeghi, H. Shahsavari, Graft copolymerization of Gelatin-g-poly (Acrylic acid-co-Acrylamide) and calculation of grafting parameters, Indian J. Sci. Technol. 5 (2012) 2041-2046.

[47]

A.J.M. Al-Karawi, Z.H.J. Al-Qaisi, H.I. Abdullaha, A.M.A. Al-Mokarama, D.T.A. Al- Heetimi, Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper (II) ions from water, Carbohydr. Polym. 83 (2011) 495-500. https://doi.org/10.1016/j.carbpol.2010.08.017.

[48]

N. Isıklan, F. Kursun, M. Inal, Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide, Carbohydr. Polym. 79 (2010) 665-672. https://doi.org/10.1016/j.carbpol.2009.09.021.

[49]

J. Sibik, M.J. Sargent, M. Franklin, J.A. Zeitler, Crystallization and phase changes in paracetamol from the amorphous solid to the liquid phase, Mol. Pharm. 11 (2014) 1326-1334. https://doi.org/10.1021/mp400768m.

[50]

G.G.G. Oliveira, A. Feitosa, K. Loureiro, A.R. Fernandes, E.B. Souto, P. Severino, Compatibility study of paracetamol, chlorpheniramine maleate and phenylephrine hydrochloride in physical mixtures, Saudi Pharmaceut. J. 25 (2017) 99-103. https://doi.org/10.1016/j.jsps.2016.05.001.

[51]

M. Ahuja, S. Kumar, A. Kumar, Tamarind seed polysaccharide-g-poly(N-Vinyl-2- Pyrrolidone): microwave-assisted synthesis, characterization, and evaluation as mucoadhesive polymer, Int. J. Polym. Mater. 62 (2013) 544-549. https://doi.org/10.1080/00914037.2012.761624.

[52]

G. Nandi, A. Changder, L.K. Ghosh, Graft-copolymer of polyacrylamide-tamarind seed gum: synthesis, characterization and evaluation of flocculating potential in peroral paracetamol suspension, Carbohydr. Polym. 215 (2019) 213-225. https://doi.org/10.1016/j.carbpol.2019.03.088.

[53]

H. Kaur, S. Yadav, M. Ahuja, N. Dilbaghi, Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer, Carbohydr. Polym. 90 (2012) 1543-1549. https://doi.org/10.1016/j.carbpol.2012.07.028.

[54]

M.R. Moura, F.A. Aouada, L.H.C. Mattoso, Preparation of chitosan nanoparticles using methacrylic acid, J. Colloid Interface Sci. 321 (2008) 477-483. https://doi.org/10.1016/j.jcis.2008.02.006.

[55]

M.J. Zohuriaan, F. Shokrolahi, Thermal studies on natural and modified gums, Polym. Test. 23 (2004) 575-579. https://doi.org/10.1016/j.polymertesting.2003.11.001.

[56]

A. Real, D. Wallander, A. Maciel, G. Cedillo, H. Loza, Graft copolymerization of ethyl acrylate onto tamarind kernel powder, and evaluation of its biodegradability, Carbohydr. Polym. 117 (2015) 11-18. https://doi.org/10.1016/j.carbpol.2014.09.044.

[57]

O. Adiguzel, Properties and production of aluminium hydroxide, J. Biomed. Pharm. Sci. 4 (2021) e326.

[58]

S. Zalac, M. Zahirul, I. Khan, V. Gabelica, M. Tudja, E. Mestrovic, M. Romih, Paracetamol-propyphenazone interaction and formulation difficulties associated with eutectic formation in combination solid dosage forms, Chem. Pharm. Bull. 47 (1999) 302-307. https://doi.org/10.1248/cpb.47.302.

[59]

S. Mandal, S.K. Basu, B. Sa, Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride, Carbohydr. Polym. 82 (2010) 867-873. https://doi.org/10.1016/j.carbpol.2010.06.009.

[60]

S. Maity, B. Sa, Development and evaluation of Ca2+ ion cross-linked carboxymethyl xanthan gum tablet prepared by wet granulation technique, AAPS, Pharm. Sci. Tech. 15 (2014) 920-927. https://doi.org/10.1208/s12249-014-0123-x.

[61]

K. Mukherjee, T. Kundu, B. Sa, Al3+ ion cross-linked matrix tablets of sodium carboxymethyl cellulose for controlled release of aceclofenac: development and invitro evaluation, Der. Pharmacia. Lettre. 4 (2012) 1633-1647.

[62]

C.S. Brazel, N.A. Peppas, Modeling of drug release from swellable polymers, Eur. J. Pharm. Biopharm. 49 (2000) 47-58, https://doi.org/10.1016/S0939-6411(99)00058-2.

[63]

M. Fosca, J.V. Rau, V. Uskokovic, Factors influencing the drug release from calcium phosphate cements, Bioact. Mater. 7 (2022) 341-363. https://doi.org/10.1016/j.bioactmat.2021.05.032.

[64]

F.M. Carbinatto, A.D. Castro, R.C. Evangelista, B.S.F. Cury, Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices, Asian J. Pharm. 9 (2014) 27-34. https://doi.org/10.1016/j.ajps.2013.12.002.

AI Summary AI Mindmap
PDF (1910KB)

371

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/