Emerging role of antioxidants in Alzheimer's disease: Insight into physiological, pathological mechanisms and management

Kamaljeet , Shamsher Singh , G.D. Gupta , Khadga Raj Aran

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100021

PDF (1548KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100021 DOI: 10.1016/j.pscia.2023.100021
Review Article
research-article

Emerging role of antioxidants in Alzheimer's disease: Insight into physiological, pathological mechanisms and management

Author information +
History +
PDF (1548KB)

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive decline, impairment in activities of daily living, and loss of independent function. Cognitive decline and brain shrinkage, particularly hippocampal atrophy, are associated with the accumulation of tau proteins. They cause inflammation, amyloid plaque deposition, neuronal loss, temporofrontal cortex atrophy, aberrant protein fragment clusters, and twisted fiber bundles. Given the significant role of oxidative processes in neurodegeneration, it is logical to consider the potential of antioxidants in the treatment of AD. Several antioxidants, including glutathione, astaxanthin, ascorbyl palmitate, catalase, and molecular hydrogen, play important roles in AD. Antioxidants interact with free radicals to neutralize them. Several studies have suggested that oxidative stress or damage is involved in the development of AD via different mechanisms and pathways. Thus, new approaches are needed to reduce the extent of oxidative damage that may be therapeutically effective against AD. Although certain antioxidants have exhibited notable benefits in animal models, their efficacy in human clinical trials has been limited, casting doubt regarding the efficacy of antioxidant treatments for AD. Therefore, a more focused and precise strategy that incorporates antioxidants is essential for slowing or stopping AD progression. The integrated role of antioxidants in reducing inflammation must be considered, because the link between inflammation and AD is undeniable. Therefore, the present study aimed to elucidate the role of antioxidants in AD, with the goal of aiding researchers in developing effective and potentially enhanced antioxidant-based therapeutic strategies.

Keywords

Alzheimer's disease / Antioxidant / Glutathione / Astaxanthin / Catalase

Cite this article

Download citation ▾
Kamaljeet, Shamsher Singh, G.D. Gupta, Khadga Raj Aran. Emerging role of antioxidants in Alzheimer's disease: Insight into physiological, pathological mechanisms and management. Pharmaceutical Science Advances, 2024, 2(1): 100021 DOI:10.1016/j.pscia.2023.100021

登录浏览全文

4963

注册一个新账户 忘记密码

Author's contribution

Kamaljeet and Khadga Raj Aran summarized the literature and wrote the manuscript. Dr. Shamsher Singh and Dr. G.D. Gupta provided writing ideas and guided manuscript revision. All the authors have read and agreed to the published version of the manuscript.

Consent for publication

Not applicable.

Data availability statements

Data supporting the findings of this study will be provided upon reasonable request.

Ethics approval

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The author declares no conflict of interest.

Acknowledgements

The authors are grateful to the ISF College of Pharmacy, Moga, for providing the provisions and facilities to complete the review.

References

[1]

S. Salloway, J. Mintzer, M.F. Weiner, J.L. Cummings, Disease-modifying therapies in Alzheimer’s disease, Alzheimers Dement 4 (2008) 65-79. https://doi.org/10.1016/j.jalz.2007.10.001.

[2]

D.A. Evans, Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported, JAMA 262 (1989) 2551-2556. https://doi.org/10.1001/jama.1989.03430180093036.

[3]

Dementia.https://www.who.int/news-room/fact-sheets/detail/dementia.(Accessed19April2023).

[4]

A.S. Morrison, C. Lyketsos, The pathophysiology of Alzheimer’s disease and directions in treatment, Adv. Stud Nurs. 3 (2005) 256-270. https://doi.org/10.1007/s10989-023-10524-3.

[5]

A. Kumar, A. Singh, Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update, Pharmacol. Rep. 67 (2015) 195-203, https://doi.org/10.1016/j.pharep.2014.09.004.

[6]

S. Mishra, K. Palanivelu, The effect of curcumin (turmeric) on Alzheimer’s disease: an overview, Ann. Indian Acad. Neurol. 11 (2008) 13, https://doi.org/10.4103/0972-2327.40220.

[7]

B.P. Imbimbo, J. Lombard, N. Pomara, Pathophysiology of Alzheimer’s disease, Neuroimaging Clin 15 (2005) 727-753. https://doi.org/10.1016/j.nic.2005.09.009.

[8]

M. Sharifi-Rad, et al., Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases, Front. Physiol. 11 (2020) 694. https://doi.org/10.3389/fphys.2020.00694.

[9]

S.C. Bondy, A. Campbell, Inflammation, Aging, and Oxidative Stress, Springer, 2016. https://doi.org/10.1007/978-3-319-33486-8.

[10]

A.K. Kumar Thakur, P. Kamboj, K. Goswami, K. Ahuja, Pathophysiology and management of Alzheimer’s disease: an overview, J. Anal. Pharm. Res. 7 (2018). https://doi.org/10.15406/japlr.2018.07.00230.

[11]

H. Braak, E. Braak, Frequency of stages of Alzheimer-related lesions in different age categories, Neurobiol. Aging 18 (1997) 351-357. https://doi.org/10.1016/S0197-4580(97)00056-0.

[12]

Y.H. Um, W.H. Choi, W.S. Jung, Y.H. Park, C.-U. Lee, H.K. Lim, A case report of a 37-year-old Alzheimer’s disease patient with prominent striatum amyloid retention, Psychiatry Investig 14 (2017) 521, https://doi.org/10.4306/pi.2017.14.4.521.

[13]

B.L. Handen, et al., Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B, Alzheimer’s Dementia 8 (2012) 496-501. https://doi.org/10.1016/j.jalz.2011.09.229.

[14]

W.E. Klunk, et al., Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees, J. Neurosci. 27 (2007) 6174-6184. https://doi.org/10.1523/JNEUROSCI.0730-07.2007.

[15]

V.L. Villemagne, et al., High striatal amyloid β-peptide deposition across different autosomal Alzheimer disease mutation types, Arch. Neurol. 66 (2009) 1537-1544. https://doi.org/10.1001/archneurol.2009.285.

[16]

M. Mandal, et al., Reactive oxygen species (ROS) and reactive nitrogen sspecies (RNS) in plants- maintenance of structural individuality and functional blend, Adv. Redox Res. 5 (2022) 100039. https://doi.org/10.1016/j.arres.2022.100039.

[17]

W.R. Markesbery, J.M. Carney, Oxidative alterations in Alzheimer’s disease, Brain Pathol. 9 (1999) 133-146, https://doi.org/10.1111/j.1750-3639.1999.tb00215.x.

[18]

C. Behl, J.B. Davis, R. Lesley, D. Schubert, Hydrogen peroxide mediates amyloid β protein toxicity, Cell 77 (1994) 817-827. https://doi.org/10.1016/0092-8674(94)90131-7.

[19]

K. Hensley, et al., A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide:relevance to Alzheimer disease, Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 3270-3274. https://doi.org/10.1073/pnas.91.8.3270.

[20]

H. Misonou, M. Morishima-Kawashima, Y. Ihara, Oxidative stress induces intracellular accumulation of amyloid β-protein ( Aβ) in human neuroblastoma cells, Biochemistrys 39 (2000) 6951-6959. https://doi.org/10.1021/bi000169p.

[21]

A. Nunomura, et al., Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome, J. Neuropathol. Exp. Neurol. 59 (2000) 1011-1017. https://doi.org/10.1093/jnen/59.11.1011.

[22]

M. Valko, C.J.B. Rhodes, J. Moncol, M.M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact. 160 (2006) 1-40. https://doi.org/10.1016/j.cbi.2005.12.009.

[23]

S. Petrovic, A. Arsic, D. Ristic-Medic, Z. Cvetkovic, V. Vucic, Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: a review of human studies, Antioxidantss 9 (2020) 1128. https://doi.org/10.3390/antiox9111128.

[24]

C. Chignon, M. Tomas, D. Bonnefont-Rousselot, P. Faller, C. Hureau, F. Collin, Oxidative stress and the amyloid beta peptide in Alzheimer’s disease, Redox Biol 14 (2018) 450-464. https://doi.org/10.1016/j.redox.2017.10.014.

[25]

W.R. Markesbery, Oxidative stress hypothesis in Alzheimer’s disease, Free Radic. Biol. Med. 23 (1997) 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6.

[26]

A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, C. Loguercio, Chronic inflammation and oxidative stress in human carcinogenesis, Int. J. Cancer 121 (2007) 2381-2386. https://doi.org/10.1002/ijc.23192.

[27]

D. Praticó, Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows, Ann. N. Y. Acad. Sci. 1147 (2008) 70-78. https://doi.org/10.1196/annals.1427.010.

[28]

V. Chauhan, A. Chauhan, Oxidative stress in Alzheimer’s disease, Pathophysiology 13 (2006) 195-208. https://doi.org/10.1016/j.pathophys.2006.05.004.

[29]

K. Jomova, D. Vondrakova, M. Lawson, M. Valko, Metals, oxidative stress and neurodegenerative disorders, Mol. Cell. Biochem. 345 (2010) 91-104. https://doi.org/10.1007/s11010-010-0563-x.

[30]

K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicology 283 (2011) 65-87. https://doi.org/10.1016/j.tox.2011.03.001.

[31]

S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease, Nature 461 (2009) 1071-1078. https://doi.org/10.1038/nature08467.

[32]

Z. Cai, B. Zhao, A. Ratka, Oxidative stress and β-amyloid protein in Alzheimer’s disease, NeuroMolecular Med 13 (2011) 223-250. https://doi.org/10.1007/s12017-011-8155-9.

[33]

Y. Feng, X. Wang, Antioxidant therapies for Alzheimer’s disease, Oxid. Med. Cell. Longev. (2012) 1-17 2012, https://doi.org/10.1155/2012/472932.

[34]

P. Poprac, K. Jomova, M. Simunkova, V. Kollar, C.J. Rhodes, M. Valko, Targeting free radicals in oxidative stress-related human diseases, Trends Pharmacol. Sci. 38 (2017) 592-607. https://doi.org/10.1016/j.tips.2017.04.005.

[35]

J.N. Keller, et al., Evidence of increased oxidative damage in subjects with mild cognitive impairment, Neurology 64 (2005) 1152-1156. https://doi.org/10.1212/01.WNL.0000156156.13641.BA.

[36]

J.-Z. Wang, F. Liu, Microtubule-associated protein tau in development, degeneration and protection of neurons, Prog. Neurobiol. 85 (2008) 148-175. https://doi.org/10.1016/j.pneurobio.2008.03.002.

[37]

R. Sultana, M. Perluigi, D.A. Butterfield, Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis, Acta Neuropathol 118 (2009) 131-150. https://doi.org/10.1007/s00401-009-0517-0.

[38]

C.M. Weekley, C. He, Developing drugs targeting transition metal homeostasis, Curr. Opin. Chem. Biol. 37 (2017) 26-32. https://doi.org/10.1016/j.cbpa.2016.12.011.

[39]

A.I. Bush, R.E. Tanzi, Therapeutics for Alzheimer’s disease based on the metal hypothesis, Neurotherapeutics 5 (2008) 421-432. https://doi.org/10.1016/j.nurt.2008.05.001.

[40]

C. Bacchella, et al., Binding and reactivity of copper to R-1 and R-3 fragments of tau protein, Inorg. Chem. 59 (2020) 274-286. https://doi.org/10.1021/acs.inorgchem.9b02266.

[41]

M. Kitazawa, H.-W. Hsu, R. Medeiros, Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta, Toxicol. Sci. 152 (2016) 194-204. https://doi.org/10.1093/toxsci/kfw081.

[42]

L. Vijaya, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: impact on human health, Phcog. Rev. 4 (2010) 118, https://doi.org/10.4103/0973-7847.70902.

[43]

N. Ahmed, U. Ahmed, P.J. Thornalley, K. Hager, G. Fleischer, G. Münch, Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment, J. Neurochem. 92 (2005) 255-263. https://doi.org/10.1111/j.1471-4159.2004.02864.x.

[44]

D.A. Butterfield, et al., Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease, Brain Res 1148 (2007) 243-248. https://doi.org/10.1016/j.brainres.2007.02.084.

[45]

Z. Fu, J. Zhang, Y. Zhang, Role of molecular hydrogen in ageing and ageing-related diseases, Oxid. Med. Cell. Longev. 2022 (2022) 1-17. https://doi.org/10.1155/2022/2249749.

[46]

K. Ohno, M. Ito, M. Ichihara, M. Ito, Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases, Oxid. Med. Cell. Longev. (2012) 1-11 2012, https://doi.org/10.1155/2012/353152.

[47]

C.L. Hammond, T.K. Lee, N. Ballatori, Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes, J. Hepatol. 34 (2001) 946-954. https://doi.org/10.1016/S0168-8278(01)00037-X.

[48]

R. Dringen, Metabolism and functions of glutathione in brain, Prog. Neurobiol. 62 (2000) 649-671. https://doi.org/10.1016/S0301-0082(99)00060-X.

[49]

S. Saharan, P.K. Mandal, The emerging role of glutathione in Alzheimer’s disease, J. Alzheimers Dis. 40 (2014) 519-529. https://doi.org/10.3233/JAD-132483.

[50]

R. Dringen, J. Hirrlinger, Glutathione pathways in the brain, Biol. Chem. 384 (2003). https://doi.org/10.1515/BC.2003.059.

[51]

C. Mytilineou, B.C. Kramer, J.A. Yabut, Glutathione depletion and oxidative stress, Parkinsonism Relat. Disorders 8 (2002) 385-387. https://doi.org/10.1016/S1353-8020(02)00018-4.

[52]

A. Jain, J. Mårtensson, E. Stole, P.A. Auld, A. Meister,Glutathione deficiency leads to mitochondrial damage in brain, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 1913- 1917. https://doi.org/10.1073/pnas.88.5.1913.

[53]

J.C. García, D. Remires, A. Leiva, R. González, Depletion of brain glutathione potentiates the effect of 6-hydroxydopamine in a rat model of Parkinson’s disease, J. Mol. Neurosci. 14 (2000) 147-154, https://doi.org/10.1385/JMN:14:3:147.

[54]

J.B. Schulz, J. Lindenau, J. Seyfried, J. Dichgans, Glutathione oxidative stress and neurodegeneration, Eur. J. Biochem. 267 (2000) 4904-4911, https://doi.org/10.1046/j.1432-1327.2000.01595.x.

[55]

C. Zhang, C. Rodriguez, J. Spaulding, T.Y. Aw, J. Feng, Age-dependent and tissuerelated glutathione redox status in a mouse model of Alzheimer’s disease, J. Alzheimers Dis. 28 (2012) 655-666. https://doi.org/10.3233/JAD-2011-111244.

[56]

C.B. Pocernich, D.A. Butterfield, Elevation of glutathione as a therapeutic strategy in Alzheimer disease, Biochim. Biophys. Acta 1822 (2012) 625-630. https://doi.org/10.1016/j.bbadis.2011.10.003.

[57]

M.Y. Aksenov, et al., The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease, J. Mol. Neurosci. 11 (1998) 151-164, https://doi.org/10.1385/JMN:11:2:151.

[58]

T. Iwamoto, et al., Inhibition of low-density lipoprotein oxidation by astaxanthin, J. Atherosclerosis Thromb. 7 (2000) 216-222. https://doi.org/10.5551/jat1994.7.216.

[59]

A. Singhal, V.B. Morris, V. Labhasetwar, A. Ghorpade,Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress, Cell Death Dis. 4 (2013) e903, https://doi.org/10.1038/cddis.2013.362.

[60]

G.F. Gaetani, A.M. Ferraris, M. Rolfo, R. Mangerini, S. Arena, H.N. Kirkman, Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes, Blood 87 (1996) 1595-1599. https://doi.org/10.1182/blood.V87.4.1595.bloodjournal8741595.

[61]

N. Masuoka, M. Wakimoto, T. Ubuka, T. Nakano, Spectrophotometric determination of hydrogen peroxide: catalase activity and rates of hydrogen peroxide removal by erythrocytes, Clin. Chim. Acta 254 (1996) 101-112. https://doi.org/10.1016/0009-8981(96)06374-7.

[62]

K. Hashida, Y. Sakakura, N. Makino, Kinetic studies on the hydrogen peroxide elimination by cultured PC12 cells: rate limitation by glucose-6-phosphate dehydrogenase, Biochim. Biophys. Acta 1572 (2002) 85-90. https://doi.org/10.1016/S0304-4165(02)00282-9.

[63]

C. Galasso, et al., On the neuroprotective role of astaxanthin: new perspectives? Mar. Drugs 16 (2018) 247. https://doi.org/10.3390/md16080247.

[64]

B. Stachowiak, P. Szulc, Astaxanthin for the food industry, Molecules 26 (2021) 2666. https://doi.org/10.3390/molecules26092666.

[65]

C. Chitchumroonchokchai, M.L. Failla, Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements, Food Res. Int. 99 (2017) 936-943. https://doi.org/10.1016/j.foodres.2016.10.010.

[66]

S. Wang, X. Qi, The putative role of astaxanthin in neuroinflammation modulation: mechanisms and therapeutic potential, Front. Pharmacol. 13 (2022) 916653. https://doi.org/10.3389/fphar.2022.916653.

[67]

M. Yang, Y. Wang, Recent advances and the mechanism of astaxanthin in ophthalmological diseases, J. Ophthalmol. 2022 (2022) 1-11. https://doi.org/10.1155/2022/8071406.

[68]

S. Kim, H. Kim, Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review, Nutrients 10 (2018) 1137. https://doi.org/10.3390/nu10091137.

[69]

G. Chunyan, L. Sun, X. Chen, D. Zhang, Oxidative stress, mitochondrial damage and neurodegenerative diseases, Neural Regen. Res. 8 (2013) 2003. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009.

[70]

C. Galasso, et al., On the neuroprotective role of astaxanthin: new perspectives? Mar. Drugs 16 (2018) 247. https://doi.org/10.3390/md16080247.

[71]

M. Fu, et al., Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism, Nutra, Neurosis (2022) 1-11. https://doi.org/10.1080/1028415X.2022.2055376.

[72]

M.S. Zhang, J.H. Liang, M.J. Yang, Y.R. Ren, D.H. Cheng, Q.H. Wu, Y. He, J. Yin, Low serum superoxide dismutase is associated with a high risk of cognitive impairment after mild acute ischemic stroke, Front. Aging Neurosis. 14 (2022) 834114. https://doi.org/10.3389/fnagi.2022.834114.

[73]

S. Pritam, P. Deka, R. Bhardwaj, A. Srivastava, R. Kumar, D. Kimar, A.K. Jha, N.K. Jha, C. Villa, S.K. Jha, Antioxidants in Alzheimer’s disease: current therapeutic significance and future prospects, Biology 11 (2022) 212. https://doi.org/10.3390/biology11020212.

[74]

R.C. Smart, C.L. Crawford, Effect of ascorbic acid and its synthetic lipophilic derivative ascorbyl palmitate on phorbol ester-induced skin-tumor promotion in mice, Am. J. Clin. Nutr. 54 (1991) 1266S-1273S. https://doi.org/10.1093/ajcn/54.6.1266s.

[75]

A. Meves, S.N. Stock, A. Beyerle, M.R. Pittelkow, D. Peus, Vitamin C derivative ascorbyl palmitate promotes ultraviolet-B-induced lipid peroxidation and cytotoxicity in keratinocytes, J. Invest. Dermatol. 119 (2002) 1103-1108. https://doi.org/10.1046/j.1523-1747.2002.19521.x.

[76]

M. Zámocký, B. Gasselhuber, P.G. Furtmüller, C. Obinger, Molecular evolution of hydrogen peroxide degrading enzymes, Arch. Biochem. Biophys. 525 (2012) 131-144. https://doi.org/10.1016/j.abb.2012.01.017.

[77]

L.K. Habib, M.T.C. Lee, J. Yang, Inhibitors of catalase-amyloid interactions protect cells from β-amyloid-induced oxidative stress and toxicity, J. Biol. Chem. 285 (2010) 38933-38943. https://doi.org/10.1074/jbc.M110.132860.

[78]

A.L. Brioukhanov, A.I. Netrusov, Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes, Biochemistry 69 (2004) 949-962, https://doi.org/10.1023/B:BIRY.0000043537.04115.d9.

[79]

L. Mezzaroba, D.F. Alfieri, A.N. Colado Simão, E.M. Vissoci Reiche, The role of zinc, copper, manganese and iron in neurodegenerative diseases, Neurotoxicology 74 (2019) 230-241. https://doi.org/10.1016/j.neuro.2019.07.007.

[80]

K. Yasui, A. Baba, Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation, Inflamm. Res. 55 (2006) 359-363. https://doi.org/10.1007/s00011-006-5195-y.

[81]

D. Tamayo, et al., Identification and analysis of the role of super oxide dismutases isoforms in the pathogenesis of Paracoccidioides spp, PLoS Neglected Trop. Dis. 10 (2016) e0004481, https://doi.org/10.1371/journal.pntd.0004481.

[82]

S.S. Schatzman, et al., Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens, J. Biol. Chem. 295 (2020) 570-583. https://doi.org/10.1074/jbc.RA119.011084.

[83]

R. Sinha, G. Block, P.R. Taylor, Determinants of plasma ascorbic acid in a healthy male population, Cancer Epidemiol. Biomarkers Prev. 1 (1992) 297-302.

[84]

K.A. Youdim, J.A. Joseph, A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects, Free Radic. Biol. Med. 30 (2001) 583-594. https://doi.org/10.1016/S0891-5849(00)00510-4.

[85]

B.H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharmacol. Ther. 96 (2002) 67-202. https://doi.org/10.1016/S0163-7258(02)00298-X.

[86]

K.H. Miean, S. Mohamed, Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants, J. Agric. Food Chem. 49 (2001) 3106-3112. https://doi.org/10.1021/jf000892m.

[87]

P.-G. Pietta, Flavonoids as antioxidants, J. Nat. Prod. 63 (2000) 1035-1042. https://doi.org/10.1021/np9904509.

[88]

R.J. Nijveldt, E.L.S. Van Nood, D.E.C. Van Hoorn, P.G. Boelens, K. Van Norren, P.A.M. Van Leeuwen, Flavonoids: a review of probable mechanisms of action and potential applications, Am. J. Clin. Nutr. 74 (2001) 418-425. https://doi.org/10.1093/ajcn/74.4.418.

[89]

S.R. Georgetti, R. Casagrande, V.M. Di Mambro, A.E.C.S. Azzolini, M.J.V. Fonseca, Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence method, AAPS PharmSci 5 (2003) 111-115. https://doi.org/10.1208/ps050220.

[90]

J.-M. Chow, S.-C. Shen, S.K. Huan, H.-Y. Lin, Y.-C. Chen, Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages, Biochem. Pharmacol. 69 (2005) 1839-1851. https://doi.org/10.1016/j.bcp.2005.03.017.

[91]

S. Jang, K.W. Kelley, R.W. Johnson,Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 7534-7539. https://doi.org/10.1073/pnas.0802865105.

[92]

J.-C. Chen, et al., Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia, Eur. J. Pharmacol. 521 (2005) 9-20. https://doi.org/10.1016/j.ejphar.2005.08.005.

[93]

I. Bernatova,The Treatment of Familial Hypercholesterolemia Menu.

[94]

J.A. Vinson, Y. Hao, X. Su, L. Zubik, Phenol antioxidant quantity and quality in foods, vegetables, J. Agric. Food Chem. 46 (1998) 3630-3634. https://doi.org/10.1021/jf980295o.

[95]

A. Kumar, N. Sehgal, P. Kumar, S.S.V. Padi, P.S. Naidu, Protective effect of quercetin against ICV colchicine-induced cognitive dysfunctions and oxidative damage in rats, Phyther. Res. 22 (2008) 1563-1569. https://doi.org/10.1002/ptr.2454.

[96]

K. Rezai-Zadeh, et al., Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD 40 expression, J. Neuroinflammation 5 (2008) 1-10. https://doi.org/10.1186/1742-2094-5-41.

AI Summary AI Mindmap
PDF (1548KB)

319

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/