Biowaiver based on biopharmaceutics classification system: Considerations and requirements

Pratik R. Dhake , Smita T. Kumbhar , Vinod L. Gaikwad

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100020

PDF (902KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100020 DOI: 10.1016/j.pscia.2023.100020
Review Article
research-article

Biowaiver based on biopharmaceutics classification system: Considerations and requirements

Author information +
History +
PDF (902KB)

Abstract

Biowaiver allows for the waiver of bioequivalence studies for regulatory approval of certain drug products with saving of time, and money. Before approval of the application for biowaivers, studies based on the Biopharmaceutical Classification System (BCS) are required to satisfy regulators in the US, Europe, and other developing markets. Only pharmaceutical products that meet the regulatory requirements for solubility, diffusion, and permeability will be granted a biowaiver. Due to high solubility and considerable permeability, BCS class I and class III drugs are highly preferred for biowaiver by regulatory agencies. The World Health Organization recently expanded the scope of the biowaiver acceptance by considering all BCS classes. These techniques can cut down on time and money spent on ineffective bioequivalence studies. In the present article, an attempt has been made to cover the prerequisites and guidelines for biowaiver approval of a generic product, a topical system, oral films, and BCS class II and IV drugs.

Keywords

Biowaiver / Biopharmaceutics classification system / Bioequivalent / Solubility / Permeability / Generics

Cite this article

Download citation ▾
Pratik R. Dhake, Smita T. Kumbhar, Vinod L. Gaikwad. Biowaiver based on biopharmaceutics classification system: Considerations and requirements. Pharmaceutical Science Advances, 2024, 2(1): 100020 DOI:10.1016/j.pscia.2023.100020

登录浏览全文

4963

注册一个新账户 忘记密码

Author Contributions

Pratik R. Dhake: Writing - original draft.

Smita T. Kumbhar: Methodology; Resources; Writing - original draft.

Vinod L. Gaikwad: Conceptualization; Methodology; Project administration; Resources; Supervision; Writing - review & editing.

All authors have read and approved the final manuscript.

Data availability

Not applicable.

Ethics approval

Not applicable.

Funding information

There was no funding received from any agency for the preparation of this article.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Acknowledgments

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1]

USFDA, Dissolution Testing of Immediate Release Solid Oral Dosage Forms, 1997, pp. 1-17. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/dissolution-testing-immediate-release-solid-oral-dosage-forms.(Accessed31December2022).

[2]

USFDA,M9 Biopharmaceutics Classification System Based Biowaivers, 2021. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m9-biopharmaceutics-classification-system-based-biowaivers.(Accessed4March2023).

[3]

G.L. Amidon, H. Lennern€as, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. ( N. Y.) 12 (1995) 413-420, https://doi.org/10.1208/s12248-014-9620-9.

[4]

S.K. Niazi,Handbook of Bioequivalence Testing, second ed.ed., CRC Press, Boca Raton, Florida, 2014.

[5]

C.Y. Wu, L.Z. Benet, Predicting drug disposition via application of BCS: transport/ absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system, Pharm. Res. ( N. Y.) 22 (2005) 11-23, https://doi.org/10.1007/s11095-004-9004-4.

[6]

C.A.S. Bergstr€om, S.B.E. Andersson, J.H. Fagerberg, G. Ragnarsson, A. Lindahl, Is the full potential of the biopharmaceutics classification system reached? Eur. J. Pharmaceut. Sci. 57 (2014) 224-231, https://doi.org/10.1016/j.ejps.2013.09.010.

[7]

M. V Varma, A.F. El-Kattan, B. Feng, S.J. Steyn, T.S. Maurer, D.O. Scott, A.D. Rodrigues, L.M. Tremaine, Extended Clearance Classification System (ECCS) informed approach for evaluating investigational drugs as substrates of drug transporters, Clin. Pharmacol. Ther. 102 (2017) 33-36, https://doi.org/10.1002/CPT.595.

[8]

G.P. Camenisch, Drug disposition classification systems in discovery and development: a comparative review of the bddcs, eccs and ecccs concepts, Pharm. Res. ( N. Y.) 33 (2016) 2583-2593, https://doi.org/10.1007/s11095-016-2001-6.

[9]

R.E.L. Lazo, L.K. Teleginski, A.B. Maciel, M.A.S. Silva, C. Mendes, L.S. Bernardi, F.S. Murakami, F. Sonvico, P.R. Oliveira, Comparator product issues for biowaiver implementation: the case of Fluconazole, Brazilian J. Pharm. Sci. 58 (2022) e19710, https://doi.org/10.1590/s2175-97902022e19710.

[10]

NIH, Waiver of in Vivo Bioavailability and Bioequivalence Studies for Immediate- Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, 2017, pp. 1-19. https://collections.nlm.nih.gov/catalog/nlm:nlmuid-101720038-pdf.(Accessed30December2022)

[11]

N. Goodarzi, A. Barazesh Morgani, B. Abrahamsson, R. Cristofoletti, D.W. Groot, P. Langguth, M.U. Mehta, J.E. Polli, V.P. Shah, J.B. Dressman, Biowaiver monographs for immediate release solid oral dosage forms: ribavirin, J. Pharmaceut. Sci. 105 (2016) 1362-1369, https://doi.org/10.1016/j.xphs.2016.01.017.

[12]

V.A. Gray, D.A. Diaz, S. D’souza, Dissolution testing, biowaiver, and bioequivalence, Dissolution Technol. 27 (2020) 40-42, https://doi.org/10.14227/DT270320P40.

[13]

M. Kurdi, R. Karam, Biowaivers: Criteria and Requirements, MOPH, 2015, pp. 1-11. https://www.moph.gov.lb/DynamicPages/download_file/538.(Accessed4March2023).

[14]

M.O. Koeppe, R. Cristofoletti, E.F. Fernandes, S. Storpirtis, H.E. Junginger, S. Kopp, K.K. Midha, V.P. Shah, S. Stavchansky, J.B. Dressman, D.M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: levofloxacin, J. Pharmaceut. Sci. 100 (2011) 1628-1636, https://doi.org/10.1002/JPS.22413.

[15]

K.K. Midha, M.J. Rawson, J.W. Hubbard, The bioequivalence of highly variable drugs and drug products, Int. J. Clin. Pharm. Ther. 43 (2005) 485-498, https://doi.org/10.5414/CPP43485.

[16]

B.M. Davit, I. Kanfer, Y.C. Tsang, J.M. Cardot, BCS biowaivers: similarities and differences among EMA, FDA, and WHO requirements, AAPS J. 18 (2016) 612, https://doi.org/10.1208/S12248-016-9877-2.

[17]

USFDA, Waiver of in Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System Guidance for Industry, 2017, pp. 1-19. https://www.gmp-compliance.org/files/guidemgr/UCM070246.pdf.(Accessed8April2022).

[18]

F. Khalid, S.M. Farid Hassan, R. Noor, K. Zaheer, F. Hassan, I.N. Muhammad, Possibility of extending biopharmaceutics classification system based biowaiver to BCS class IIa drug, Pak. J. Pharm. Sci. 32 (2019) 2065-2073.

[19]

ICH, Biopharmaceutics Classification System-Based Biowaivers M9, vols. 1-19, 2019. https://database.ich.org/sites/default/files/M9_Guideline_Step4_2019_1116.pdf. (Accessed 1 January 2023)

[20]

EMEA, Note for Guidance on the Investigation of Bioavailability and Bioequivalence, 2000, pp. 1-19. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-note-guidance-investigation-bioavailability-bioequivalenceén.pdf.(Accessed1 January 2023).

[21]

Ema, Questions & Answers: Positions on Specific Questions Addressed to the Pharmacokinetics Working Party (PKWP), 2015, pp. 1-48. https://www.ema.europa.eu/en/documents/scientific-guideline/questions-answers-positions-specific-questions-addressed-pharmacokinetics-working-partyén.pdf.(Accessed31December2022).

[22]

EMEA, Guideline on the Investigation of Bioequivalence, 2010, pp. 1-27. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1én.pdf.(Accessed4 March 2023).

[23]

T.R.S. Who, 1025 - Annex 12: WHO “Biowaiver List”: Proposal to Waive in Vivo Bioequivalence Requirements for WHO Model List of Essential Medicines Immediate-Release, Solid Oral Dosage Forms, 2020, pp. 1-6, https://doi.org/10.1515/9783110499117-018.

[24]

Y. Tsume, D.M. Mudie, P. Langguth, G.E. Amidon, G.L. Amidon, The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC, Eur. J. Pharmaceut. Sci. 57 (2014) 152-163, https://doi.org/10.1016/J.EJPS.2014.01.009.

[25]

L.Z. Benet, C.A. Larregieu, The FDA should eliminate the ambiguities in the current BCS biowaiver guidance and make public the drugs for which bcs biowaivers have been granted, Clin. Pharmacol. Ther. 88 (2010) 405-407, https://doi.org/10.1038/clpt.2010.149.

[26]

EFDA, Guidance on Waiver of in Vivo Bioequivalence Requirements, 2021, pp. 1-48. http://www.fmhaca.gov.et/wp-content/uploads/2021/07/Guidance-onwaiver-of-in-vivo-bioequivalence-requirements.pdf.(Accessed31 December 2022).

[27]

M.E. Kubbinga, BCS-Based Biowaivers: Risks and Opportunities, 2016, pp. 1-119. https://d-nb.info/1122753373/34.(Accessed31December2022)

[28]

C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Methods 44 (2000) 235-249, https://doi.org/10.1016/S1056-8719(00)00107-6.

[29]

A. Dahan, J.M. Miller, J.M. Hilfinger, S. Yamashita, L.X. Yu, H. Lennern€as, G.L. Amidon, High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations, Mol. Pharm. 7 (2010) 1827-1834, https://doi.org/10.1021/mp100175a.

[30]

N.A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennern€as, A.S. Hussain, H.E. Junginger, S.A. Stavchansky, K.K. Midha, V.P. Shah, G.L. Amidon, Molecular properties of WHO essential drugs and provisional biopharmaceutical classification, Mol. Pharm. 1 (2004) 85-96, https://doi.org/10.1021/mp034006h.

[31]

N.A. Charoo, D.B. Abdallah, A.A. Bakheit, K.U. Haque, H.A. Hassan, B. Abrahamsson, R. Cristofoletti, P. Langguth, M. Mehta, A. Parr, J.E. Polli, V.P. Shah, T. Tajiri, J. Dressman, Biowaiver monograph for immediate-release solid oral dosage forms: sitagliptin phosphate monohydrate, J. Pharmaceut. Sci. 111 (2022) 2-13, https://doi.org/10.1016/j.xphs.2021.09.031.

[32]

H. Grady, D. Elder, G.K. Webster, Y. Mao, Y. Lin, T. Flanagan, J. Mann, A. Blanchard, M.J. Cohen, J. Lin, F. Kesisoglou, A. Hermans, A. Abend, L. Zhang, D. Curran, Industry's view on using quality control, biorelevant, and clinically relevant dissolution tests for pharmaceutical development, registration, and commercialization, J. Pharmaceut. Sci. 107 (2018) 34-41, https://doi.org/10.1016/j.xphs.2017.10.019.

[33]

A. García-Arieta, J. Gordon, Bioequivalence requirements in the European Union: critical discussion, AAPS J. 14 (2012) 738-748, https://doi.org/10.1208/s12248-012-9382-1.

[34]

G.R. Biradar, K. Monica, S. Bhattachaeyya, A brief review on pharmaceutical dissolution interlinking the aspects of science and regulation, Bull. Pharmaceut. Sci. 45 (2022) 11-21.

[35]

C.F. Rediguieri, V. Porta, D.S. Diana, T.M. Nunes, H.E. Junginger, S. Kopp, K.K. Midha, V.P. Shah, S. Stavchansky, J.B. Dressman, D.M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: metronidazole, J. Pharmaceut. Sci. 100 (2011) 1618-1627, https://doi.org/10.1002/JPS.22409.

[36]

K. Farah, M.F.H. Syed, M. Madiha, N. Rabia, G. Sana, N.M. Iyad, H. Fouzia, Comparative analysis of biopharmaceutic classification system (BCS) based biowaiver protocols to validate equivalence of a multisource product, African J. Pharm. Pharmacol. 14 (2020) 212-220, https://doi.org/10.5897/ajpp2020.5130.

[37]

R. Panchagnula, S. Agrawal, Biopharmaceutic and pharmacokinetic aspects of variable bioavailability of rifampicin, Int. J. Pharm. 271 (2004) 1-4, https://doi.org/10.1016/j.ijpharm.2003.11.031.

[38]

A. García-Arieta, Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence, Eur. J. Pharmaceut. Sci. 65 (2014) 89-97, https://doi.org/10.1016/j.ejps.2014.09.004.

[39]

N.C. Fernandes, S.C. Jagdale, A.R. Chabukswar, B.S. Kuchekar, Superdisintegrants effect on three model drugs from different BCS classes, Res. J. Pharm. Technol. 2 (2009) 335-337.

[40]

D.A. Adkin, S.S. Davis, R.A. Sparrow, P.D. Huckle, A.J. Phillips, I.R. Wilding, The effects of pharmaceutical excipients on small intestinal transit, Br. J. Clin. Pharmacol. 39 (1995) 381-387, https://doi.org/10.1111/j.1365-2125.1995.tb04466.x.

[41]

M.L. Chen, N. Sadrieh, L. Yu, Impact of osmotically active excipients on bioavailability and bioequivalence of BCS class III drugs, AAPS J. 15 (2013) 1043-1050, https://doi.org/10.1208/s12248-013-9509-z.

[42]

A. Parr, I.J. Hidalgo, C. Bode, W. Brown, M. Yazdanian, M.A. Gonzalez, K. Sagawa, K. Miller, W. Jiang, E.S. Stippler, The effect of excipients on the permeability of BCS class III compounds and implications for biowaivers, Pharm. Res. ( N. Y.) 33 (2016) 167-176, https://doi.org/10.1007/s11095-015-1773-4.

[43]

H.H. Blume, B.S. Schug, The biopharmaceutics classification system (BCS): class III drugs - better candidates for BA/BE waiver? Eur. J. Pharmaceut. Sci. 9 (1999) 117-121, https://doi.org/10.1016/S0928-0987(99)00076-7.

[44]

A. Lenhart, W.D. Chey, A systematic review of the effects of polyols on gastrointestinal health and irritable bowel syndrome, Adv. Nutr. 8 (2017) 587-596, https://doi.org/10.3945/an.117.015560.

[45]

E. Jantratid, S. Prakongpan, G.L. Amidon, J.B. Dressman, Feasibility of biowaiver extension to biopharmaceutics classification system class III drug products: cimetidine, Clin. Pharmacokinet. 45 (2006) 385-399, https://doi.org/10.2165/00003088-200645040-00004.

[46]

M. Metry, J.E. Polli, Evaluation of excipient risk in BCS class I and III biowaivers, AAPS J. 24 (2022) 1-11, https://doi.org/10.1208/s12248-021-00670-1.

[47]

R. Davis, H.M. Bryson, Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy, Drugs 47 (1994) 677-700, https://doi.org/10.2165/00003495-199447040-00008.

[48]

L.X. Yu, W. Jiang, X. Zhang, R. Lionberger, F. Makhlouf, D.J. Schuirmann, L. Muldowney, M.L. Chen, B. Davit, D. Conner, J. Woodcock, Novel bioequivalence approach for narrow therapeutic index drugs, Clin. Pharmacol. Ther. 97 (2015) 286-291, https://doi.org/10.1002/cpt.28.

[49]

W. Jiang, F. Makhlouf, D.J. Schuirmann, X. Zhang, N. Zheng, D. Conner, L.X. Yu, R. Lionberger, A bioequivalence approach for generic narrow therapeutic index drugs: evaluation of the reference-scaled approach and variability comparison criterion, AAPS J. 17 (2015) 891-901, https://doi.org/10.1208/s12248-015-9753-5.

[50]

M. Yasir, M. Asif, A. Kumar, A. Aggarval, Biopharmaceutical classification system: an account, Int. J. PharmTech Res. 2 (2010) 1681-1690.

[51]

A. Mitra, Y. Wu, Challenges and opportunities in achieving bioequivalence for fixed-dose combination products, AAPS J. 14 (2012) 646-655, https://doi.org/10.1208/s12248-012-9378-x.

[52]

B. Hens, M. Corsetti, M. Bermejo, R. L€obenberg, P.M. González, A. Mitra, D. Desai, D.M. Chilukuri, A. Aceituno, “Development of Fixed Dose Combination Products” workshop report: considerations of gastrointestinal physiology and overall development strategy, AAPS J. 21 (2019) 1-37, https://doi.org/10.1208/s12248-019-0346-6.

[53]

FIP,Biowaiver monographs 2004-2012, (n.d.) 1-112. https://www.fip.org/file/1377(accessedDecember30,2022).

[54]

M. Yazdanian, K. Briggs, C. Jankovsky, A. Hawi, The “high solubility” definition of the current FDA guidance on biopharmaceutical classification system may Be too strict for acidic drugs, Pharm. Res. ( N. Y.) 21 (2004) 293-299, https://doi.org/10.1023/B:PHAM.0000016242.48642.71.

[55]

H. Rathnayake, D. Thambavita, P. Galappatthy, Biowaiver study of selected solid oral prednisolone products available in Sri Lanka: recommendations for comparator product used in biowaiver testing, Dissolution Technol. 28 (2021) 34-39, https://doi.org/10.14227/DT280121P34.

[56]

C. Daousani, P. Macheras, Scientific considerations concerning the EMA change in the definition of “dose” of the BCS-based biowaiver guideline and implications for bioequivalence, Int. J. Pharm. 478 (2015) 606-609, https://doi.org/10.1016/j.ijpharm.2014.11.062.

[57]

G. Tiwari, R. Tiwari, S. Pandey, P. Pandey, A. Rai, In vitro - in vivo correlation and biopharmaceutical classification system (BCS): a review, Der Pharma Chem. 2 (2010) 129-140.

[58]

J.B. Dressman, C. Reppas, In vitro-in vivo correlations for lipophilic, poorly watersoluble drugs, Eur. J. Pharmaceut. Sci. 11 (2000) 73-80, https://doi.org/10.1016/S0928-0987(00)00181-0.

[59]

M. Kubbinga, P. Langguth, D. Barends, Risk analysis in bioequivalence and biowaiver decisions, Biopharm. Drug Dispos. 34 (2013) 254-261, https://doi.org/10.1002/BDD.1831.

[60]

K. Heiß, EMA versus US-FDA Regulatory Requirements Regarding Bioequivalence of Orally Administered Generics, 2014, pp. 1-76. https://www.dgra.de/media/pdf/studium/masterthesis/master_heiss_k.pdf.(Accessed31 December 2022).

[61]

Y. Yang, P. Manda, N. Pavurala, M.A. Khan, Y.S.R. Krishnaiah, Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems, J. Contr. Release 210 (2015) 58-66, https://doi.org/10.1016/j.jconrel.2015.05.263.

[62]

M. Lu, H. Xing, X. Chen, L. Xian, J. Jiang, T. Yang, P. Ding, Advance in bioequivalence assessment of topical dermatological products, Asian J. Pharm. Sci. 11 (2016) 700-707, https://doi.org/10.1016/j.ajps.2016.04.008.

[63]

V.P. Shah, F.Ş. Radulescu, D.S. Miron, A. Yacobi, Commonality between BCS and TCS, Int. J. Pharm. 509 (2016) 35-40, https://doi.org/10.1016/j.ijpharm.2016.05.032.

[64]

V. Naageshwaran, Bioequivalence, bioassays, and biowaivers: how integrated testing can accelerate generic drug development, Genet. Eng. Biotechnol. News. 40 (2020) 56-58, https://doi.org/10.1089/gen.40.09.14.

[65]

M. Miranda, J.J. Sousa, F. Veiga, C. Cardoso, C. Vitorino, Bioequivalence of topical generic products. Part 2. Paving the way to a tailored regulatory system, Eur. J. Pharmaceut. Sci. 122 (2018) 264-272, https://doi.org/10.1016/j.ejps.2018.07.011.

[66]

V.P. Shah, A. Yacobi, F.Ş. Rədulescu, D.S. Miron, M.E. Lane, A science based approach to topical drug classification system (TCS), Int. J. Pharm. 491 (2015) 21-25, https://doi.org/10.1016/j.ijpharm.2015.06.011.

[67]

V. Mohan, S. Wairkar, Current regulatory scenario and alternative surrogate methods to establish bioequivalence of topical generic products, J. Drug Deliv. Sci. Technol. 61 (2021) 102090, https://doi.org/10.1016/j.jddst.2020.102090.

[68]

E. Rinaki, A. Dokoumetzidis, G. Valsami, P. Macheras, Identification of biowaivers among class II drugs: theoretical justification and practical examples, Pharm. Res. ( N. Y.) 21 (2004) 1567-1572, https://doi.org/10.1023/B:PHAM.0000041450.25106.c8.

[69]

S. Kumar, D. Bhargava, A. Thakkar, S. Arora, Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review, Crit. Rev. Ther. Drug Carrier Syst. 30 (2013) 217-256, https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005964.

[70]

I.E. Shohin, J.I. Kulinich, G. V Ramenskaya, G.F. Vasilenko, Evaluation of in vitro equivalence for drugs containing BCS class II compound ketoprofen, Dissolution Technol. 18 (2011) 26-29, https://doi.org/10.14227/DT180111P26.

[71]

S.G. Yang, Biowaiver extension potential and IVIVC for BCS class II drugs by formulation design: case study for cyclosporine self-microemulsifying formulation, Arch Pharm. Res. (Seoul) 33 (2010) 1835-1842, https://doi.org/10.1007/s12272-010-1116-2.

[72]

A. Bhakay, R. Davé, E. Bilgili, Recovery of BCS Class II drugs during aqueous redispersion of core-shell type nanocomposite particles produced via fluidized bed coating, Powder Technol. 236 (2013) 221-234, https://doi.org/10.1016/j.powtec.2011.12.066.

[73]

I. Kovaĉević, J. Parojĉić, I. Homŝek, M. Tubić-Grozdanis, P. Langguth, Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation, Mol. Pharm. 6 (2009) 40-47, https://doi.org/10.1021/mp800128y.

[74]

F. Faassen, H. Vromans, Biowaivers for oral immediate-release products: implications of linear pharmacokinetics, Clin. Pharmacokinet. 43 (2004) 1117-1126, https://doi.org/10.2165/00003088-200443150-00004.

[75]

S. Agrawal, R. Panchagnula, Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage form, Biopharm. Drug Dispos. 26 (2005) 321-334, https://doi.org/10.1002/bdd.464.

[76]

C. Becker, J.B. Dressman, H.E. Junginger, S. Kopp, K.K. Midha, V.P. Shah, S. Stavchansky, D.M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: rifampicin, J. Pharmaceut. Sci. 98 (2009) 2252-2267, https://doi.org/10.1002/JPS.21624.

[77]

M. Tubic-Grozdanis, M.B. Bolger, P. Langguth, Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds, AAPS J. 10 (2008) 213-226, https://doi.org/10.1208/s12248-008-9023-x.

[78]

J.B. Dressman, H. Lennernas,Oral Drug Absorption: Prediction and Assessment, first ed., CRC Press, New york, 2000.

[79]

I.E. Shohin, J.I. Kulinich, G.F. Vasilenko, G. V Ramenskaya, Interchangeability evaluation of multisource ibuprofen drug products using biowaiver procedure, Indian J. Pharmaceut. Sci. 73 (2011) 443-446, https://doi.org/10.4103/0250-474X.95643.

[80]

K. Sugano, Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism, Mol. Pharm. 7 (2010) 1362-1373, https://doi.org/10.1021/mp1001119.

[81]

M.S. Gupta, T.P. Kumar, D.V. Gowda, J.M. Rosenholm, Orodispersible films: conception to quality by design, Adv. Drug Deliv. Rev. 178 (2021) 113983, https://doi.org/10.1016/j.addr.2021.113983.

[82]

A. García-Arieta, J. Gordon, On the BCS biowaivers of orally disintegrating tablets, Eur. J. Pharmaceut. Sci. 66 (2015) 107-108, https://doi.org/10.1016/j.ejps.2014.10.009.

[83]

A. Ono, K. Sugano, Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations, Eur. J. Pharmaceut. Sci. 64 (2014) 37-43, https://doi.org/10.1016/j.ejps.2014.08.003.

[84]

W. Zhang, C. Xiao, Y. Xiao, B. Tian, D. Gao, W. Fan, G. Li, S. He, G. Zhai, An overview of in vitro dissolution testing for film dosage forms, J. Drug Deliv. Sci. Technol. 71 (2022) 103297, https://doi.org/10.1016/j.jddst.2022.103297.

[85]

CDER, Approval Package for: Application Number: 022524Orig1s000: ZUPLENZ Oral Soluble Film, 4 Mg and 8 Mg, 2011, pp. 1-9. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022524Orig1s000Approv.pdf.(Accessed4 March 2023).

[86]

E.T.L. Lau, K.J. Steadman, J.A.Y. Cichero, L.M. Nissen, Dosage form modification and oral drug delivery in older people, Adv. Drug Deliv. Rev. 135 (2018) 75-84, https://doi.org/10.1016/j.addr.2018.04.012.

[87]

M.S. Schar, T.I. Omari, R.J. Fraser, A.D. Bersten, S. Bihari, Disordered swallowing associated with prolonged oral endotracheal intubation in critical illness, Intensive Care Med. 46 (2020) 140-142, https://doi.org/10.1007/s00134-019-05844-2.

[88]

R. Ternik, F. Liu, J.A. Bartlett, Y.M. Khong, D.C. Thiam Tan, T. Dixit, S. Wang, E.A. Galella, Z. Gao, S. Klein, Assessment of swallowability and palatability of oral dosage forms in children: report from an M-CERSI pediatric formulation workshop, Int. J. Pharm. 536 (2018) 570-581, https://doi.org/10.1016/j.ijpharm.2017.08.088.

[89]

M.S. Pacheco, D. Barbieri, C.F. da Silva, M.A. de Moraes, A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others, Int. J. Biol. Macromol. 178 (2021) 504-513, https://doi.org/10.1016/j.ijbiomac.2021.02.180.

[90]

U.S.P. Convention, Pharmacopeial Forum PF 43 (1) (2017) 1-3681. https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/pf-legacy-pdf/pf-2017_vol-43.pdf.(Accessed4March2023).

[91]

CDER, Clinical Pharmacology and Biopharmaceutics Review(s), 2018, pp. 1-75. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/204417Orig1s000ClinPharmR.pdf.

[92]

N.A. Charoo, R. Cristofoletti, J.B. Dressman, Risk assessment for extending the Biopharmaceutics Classification System-based biowaiver of immediate release dosage forms of fluconazole in adults to the paediatric population, J. Pharm. Pharmacol. 67 (2015) 1156-1169, https://doi.org/10.1111/jphp.12411.

[93]

L. Sun, J. Sun, Z. He, Exploring the feasibility of biowaiver extension of BCS class III drugs with site-specific absorption using gastrointestinal simulation technology, Eur. J. Drug Metab. Pharmacokinet. 42 (2017) 471-487, https://doi.org/10.1007/s13318-016-0361-2.

AI Summary AI Mindmap
PDF (902KB)

1621

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/