Analysis of the underlying mechanism of Ziziphi Spinosae Semen for treating anxiety disorder in a zebrafish sleep deprivation model

Jian Zhang , Junli Feng , Chenyu Feng

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100019

PDF (1189KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100019 DOI: 10.1016/j.pscia.2023.100019
Research Article
research-article

Analysis of the underlying mechanism of Ziziphi Spinosae Semen for treating anxiety disorder in a zebrafish sleep deprivation model

Author information +
History +
PDF (1189KB)

Abstract

Anxiety and depression are the most prevalent psychiatric disorders in the world, and they are highly comorbid with each other. Ziziphi Spinosae Semen (ZSS) is a traditional Chinese herbal medicine widely used in the treatment of insomnia and anxiety in clinical practice. To explore the effects of ZSS in alleviating anxiety in a sleep deprivation (SD) zebrafish model, the locomotor activity performance and anxiety behavior of these experimental fish were evaluated, and the underlying mechanisms of its anti-anxiety effect were examined by analyzing the transcriptomics of brain tissues. Results indicated that ZSS could significantly reduce the freezing duration and alleviate anxiety-like behavior. Moreover, ZSS was effective in promoting melatonin biosynthesis and synaptic transmission, modulating circadian rhythm, and preventing inflammatory response and oxidative stress, as evidenced by the expression alterations of the key anti-oxidation genes (GCLC, GPX1A, GSR, NRF2A and PRDX1) and pro-inflammatory cytokine (IL2RGA, IL6 and IL17A/F1). These findings will contribute to the understanding of how ZSS alleviates SD-induced anxiety, and provide a theoretical basis for the clinical application of ZSS.

Keywords

Zebrafish / Sleep deprivation / Circadian rhythm / Melatonin / Anxiety disorder

Cite this article

Download citation ▾
Jian Zhang, Junli Feng, Chenyu Feng. Analysis of the underlying mechanism of Ziziphi Spinosae Semen for treating anxiety disorder in a zebrafish sleep deprivation model. Pharmaceutical Science Advances, 2024, 2(1): 100019 DOI:10.1016/j.pscia.2023.100019

登录浏览全文

4963

注册一个新账户 忘记密码

Authorship contributions

J. Zhang performed the zebrafish behavioral tests and the data analysis. C. Feng performed the anxiety model establishment and zebrafish feeding experiments. C. Feng and J. Feng wrote the manuscript with input from all authors. All of the authors were involved in proofreading and approved the final manuscript.

Ethics approval

The zebrafish experimental protocol was approved by the Zhejiang Academy of Medical Sciences Animal Experiments Ethics Committee (approval number: IACUC-20230220-15), which follows the National Institutes of Health Guidelines for the care and use of laboratory animals.

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability

Data will be made available on request.

Declaration of competing interest

Author C. Feng is a student of High School Affiliated to The University of Nottingham Ningbo China, and has contributed a lot to the study, but has no potential relevant financial or non-financial interests to disclose. C. Feng and J. Feng are not related. The other authors have no conflicts of interest to declare.

Acknowledgments

Not applicable.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2023.100019.

References

[1]

H. Kim, S.H. Kim, S.I. Jang, E.C. Park, Association between sleep quality and anxiety in Korean adolescents, J. Prev. Med. Public Health 55 (2) (2022) 173-181.

[2]

A.C.V.V. Giacomini, N. Scolari, L. Marcon, B.W. Bueno, B.E. Dos Santos, K.A. Demin, A.V. Kalueff, M.S. de Abreu, Putative anxiolytic-like behavioral effects of acute paracetamol in adult zebrafish, Behav, Brain Res. 409 (2021) 113293.

[3]

Y. Ro, M. Noronha, B. Mirza, R. Ansari, R. Gerlai, The tapping assay: a simple method to induce fear responses in zebrafish, Behav. Res. Methods 54 (6) (2022) 2693-2706.

[4]

R.C. Cox, B.O. Olatunji, Sleep in the anxiety-related disorders: a meta-analysis of subjective and objective research, Sleep Med. Rev. 51 (2020) 101282.

[5]

C. Richardson, E. Oar, J. Fardouly, N. Magson, C. Johnco, M. Forbes, R. Rapee, The moderating role of sleep in the relationship between social isolation and internalising problems in early adolescence, Child Psychiat, Hum. Dev. 50 (6) (2019) 1011-1020.

[6]

T. Sundelin, B.C. Holding, Trait anxiety does not predict the anxiogenic response to sleep deprivation, Front. Behav. Neurosci. 16 (2022) 880641.

[7]

H. Bringmann, Genetic sleep deprivation: using sleep mutants to study sleep functions, EMBO Rep. 20 (3) (2019) e46807.

[8]

S. Garbarino, P. Lanteri, N.L. Bragazzi, N. Magnavita, E. Scoditti, Role of sleep deprivation in immune-related disease risk and outcomes, Commun. Biol. 4 (1) (2021) 1304.

[9]

L.M. Lyall, C.A. Wyse, N. Graham, A. Ferguson, D.M. Lyall, B. Cullen, C.A. Celis Morales, S.M. Biello, D. Mackay, J. Ward, R.J. Strawbridge, J.M.R. Gill, M.E.S. Bailey, J.P. Pell, D.J. Smith, Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: a cross-sectional study of 91 105 participants from the UK Biobank, Lancet Psychiatr. 5 (6) (2018) 507-514.

[10]

G.J. Elder, E. Flo-Groeneboom, How can light be used to optimize sleep and health in older adults? Prog. Brain Res. 273 (1) (2022) 331-355.

[11]

D. Jamieson, K.M. Broadhouse, J. Lagopoulos, D.F. Hermens, Investigating the links between adolescent sleep deprivation, fronto-limbic connectivity and the Onset of Mental Disorders: a review of the literature, Sleep Med. 66 (2020) 61-67.

[12]

K.M. Khan, A.D. Collier, D.A. Meshalkina, E.V. Kysil, S.L. Khatsko, T. Kolesnikova, Y.Y. Morzherin, J.E. Warnick, A.V. Kalueff, D.J. Echevarria, Zebrafish models in neuropsychopharmacology and CNS drug discovery, Br. J. Pharmacol. 174 (13) (2017) 1925-1944.

[13]

I. Elbaz, N.S. Foulkes, Y. Gothilf, L. Appelbaum, Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish, Front. Neural Circ. 7 (2013) 9.

[14]

A.J.K. Phillips, P. Vidafar, A.C. Burns, E.M. McGlashan, C. Anderson, S.M.W. Rajaratnam, S.W. Lockley, S.W. Cain,High sensitivity and interindividual variability in the response of the human circadian system to evening light, Proc. Natl. Acad. Sci. U.S.A. 116 (24) (2019) 12019-12024.

[15]

J. Cueto-Escobedo, L.J. German-Ponciano, G. Guillén-Ruiz, C. Soria-Fregozo, E.V. Herrera-Huerta, Zebrafish as a useful tool in the research of natural products with potential anxiolytic effects, Front. Behav. Neurosci. 15 (2022) 795285.

[16]

R.J. Egan, C.L. Bergner, P.C. Hart, J.M. Cachat, P.R. Canavello, M.F. Elegante, S.I. Elkhayat, B.K. Bartels, A.K. Tien, D.H. Tien, S. Mohnot, E. Beeson, E. Glasgow, H. Amri, Z. Zukowska, A.V. Kalueff, Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish, Behav, Brain Res. 205 (1) (2009) 38-44.

[17]

M. Zhang, J. Liu, Y. Zhang, J. Xie, Ziziphi Spinosae Semen: a natural herb resource for treating neurological disorders, Curr. Top. Med. Chem. 22 (17) (2022) 1379-1391.

[18]

Y. Birling, M. Jia, G. Li, J. Sarris, A. Bensoussan, X. Zhu, Zao Ren an Shen for insomnia: a systematic review with meta-analysis, Sleep Med. 69 (2020) 41-50.

[19]

A. Singh, N. Subhashini, S. Sharma, B.N. Mallick, Involvement of the α1- adrenoceptor in sleep-waking and sleep loss-induced anxiety behavior in zebrafish, Neuroscience 245 (2013) 136-147.

[20]

A.C.V.V. Giacomini, K.H. Teixeira, L. Marcon, N. Scolari, B.W. Bueno, R. Genario, N.S. de Abreu, K.A. Demin, D.S. Galstyan, A.V. Kalueff, M.S. de Abreu, Melatonin treatment reverses cognitive and endocrine deficits evoked by a 24-h light exposure in adult zebrafish, Neurosci. Lett. 733 (2020) 135073.

[21]

P. Afonso, M. Fonseca, T. Teodoro, Evaluation of anxiety, depression and sleep quality in full-time teleworkers, J. Public Health 44 (4) (2022) 797-804.

[22]

D.J. Lv, L.X. Li, J. Chen, S.Z. Wei, F. Wang, H. Hu, A.M. Xie, C.F. Liu, Sleep deprivation caused a memory defects and emotional changes in a rotenone-based zebrafish model of Parkinson's disease, Behav. Brain Res. 372 (2019) 112031.

[23]

A.V. Gandhi, E.A. Mosser, G. Oikonomou, D.A. Prober, Melatonin is required for the circadian regulation of sleep, Neuron 85 (6) (2015) 1193-1199.

[24]

M. Davidson, N. Rashidi, M.K. Hossain, A. Raza, K. Nurgali, V. Apostolopoulos, Tryptophan and substance abuse: mechanisms and impact, Int. J. Mol. Sci. 24 (3) (2023) 2737.

[25]

L. Palzer, J.J. Bader, F. Angel, M. Witzel, S. Blaser, A. McNeil, M.K. Wandersee, N.A. Leu, C.J. Lengner, C.E. Cho, K.D. Welch, J.B. Kirkland, R.G. Meyer, M.L. Meyer-Ficca, Alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase controls dietary niacin requirements for NADt synthesis, Cell Rep. 25 (5) (2018) 1359-1370.e4.

[26]

S. Jana, H. Rastogi, Effects of caffeic acid and quercetin on in vitro permeability, metabolism and in vivo pharmacokinetics of melatonin in rats: potential for herbdrug interaction, Eur. J. Drug Metab. Pharmacokinet. 42 (5) (2017) 781-791.

[27]

T. Mokkawes, Z.Q. Lim, S.P. de Visser, Mechanism of melatonin metabolism by CYP1A1: what determines the bifurcation pathways of hydroxylation versus deformylation? J. Phys. Chem. B 126 (46) (2022) 9591-9606.

[28]

A. Kmail, Protective role of Hypericum perforatum L. and Hypericum triquetrifolium Turra against inflammatory diseases: evidence from in vitro and in vivo studies, Eur. J. Med. Plants 33 (12) (2022) 34-47.

[29]

E.M. Byrne, A.C. Heath, P.A. Madden, M.L. Pergadia, I.B. Hickie, G.W. Montgomery, N.G. Martin, N.R. Wray, Testing the role of circadian genes in conferring risk for psychiatric disorders, Am. J. Med. Genet. B: Neuropsychiatr. Genet. 165 (3) (2014) 254-260.

[30]

J. Hou, Q. Shen, X. Wan, B. Zhao, Y. Wu, Z. Xia, REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation, Behav. Brain Res. 364 (2019) 167-176.

[31]

K.K. Marballi, K. Alganem, S.J. Brunwasser, A. Barkatullah, K.T. Meyers, J.M. Campbell, A.B. Ozols, R.E. Mccullumsmith, A.L. Gallitano, Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia, Transl, Psychiatry 12 (1) (2022) 320.

[32]

K. Abe, M. Takeichi, NMDA-receptor activation induces calpain-mediated betacatenin cleavages for triggering gene expression, Neuron 53 (3) (2007) 387-397.

[33]

E. Cho, M. Kwon, J. Jung, D.H. Kang, S. Jin, S.E. Choi, Y. Kang, E.Y. Kim, AMPactivated protein kinase regulates circadian rhythm by affecting CLOCK in Drosophila, J. Neurosci. 39 (18) (2019) 3537-3550.

[34]

A.J. George, Y.C. Hoffiz, A.J. Charles, Y. Zhu, A.M. Mabb, A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders, Front. Genet. 9 (2018) 29.

[35]

A.R. Liberman, S.B. Kwon, H.T. Vu, A. Filipowicz, A. Ay, K.K. Ingram, Circadian clock model supports molecular link between PER3 and human anxiety, Sci. Rep. 7 (1) (2017) 9893.

[36]

C.W. Tschumi, M.J. Beckstead, Diverse actions of the modulatory peptide neurotensin on central synaptic transmission, Eur. J. Neurosci. 49 (6) (2019) 784-793.

[37]

X. Shao, Y. Yang, J. Chen, R. Zhao, L. Xu, X. Guo, Y. Feng, L. Qin, Identification of two CDK5R1-related subtypes and characterization of immune infiltrates in Alzheimer's disease based on an integrated bioinformatics analysis, Comput. Math. Methods Med. 2022 (2022) 6766460.

[38]

Q.D. Ge, Y. Tan, Y. Luo, W.J. Wang, H. Zhang, C. Xie, MiR-132, miR-204 and BDNFTrkB signaling pathway may be involved in spatial learning and memory impairment of the offspring rats caused by fluorine and aluminum exposure during the embryonic stage and into adulthood, Environ. Toxicol. Pharmacol. 63 (2018) 60-68.

[39]

Z. Zhang, P. Zhong, F. Hu, Z. Barger, Y. Ren, X. Ding, S. Li, F. Weber, S. Chung, R.D. Palmiter, Y. Dan, An excitatory circuit in the perioculomotor midbrain for non- REM sleep control, Cell 177 (5) (2019) 1293-1307.e16.

[40]

S.Y. Lin, C.L. Lin, C.C. Lin, W.H. Hsu, C.D. Lin, I.K. Wang, M.H. Hsieh, C.Y. Hsu, C.H. Kao, Association between angiotensin receptor blockers and suicide: nationwide population-based propensity score matching study, J. Affect. Disord. 276 (2020) 815-821.

[41]

S.K. Satyanarayanan, Y.C. Chien, J.P. Chang, S.Y. Huang, T.W. Guu, H. Su, K.P. Su, Melatonergic agonist regulates circadian clock genes and peripheral inflammatory and neuroplasticity markers in patients with depression and anxiety, Brain Behav. Immun. 85 (2020) 142-151.

[42]

G.F. Re, H. Li, J.Q. Yang, Y. Li, Z. Zhang, X. Wu, R. Zhou, D. Kong, H. Luo, Y.Q. Kuang, K.H. Wang, Exercise modulates central and peripheral inflammatory responses and ameliorates methamphetamine-induced anxiety-like symptoms in mice, Front. Mol. Neurosci. 15 (2022) 955799.

[43]

S. Manchanda, H. Singh, T. Kaur, G. Kaur, Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments, Mol. Cell. Biochem. 449 (1-2) (2018) 63-72.

[44]

H.D. Nguyen, M.S. Kim, Interactions between cadmium, lead, mercury, and arsenic and depression: a molecular mechanism involved, J. Affect. Disord. 327 (2023) 315-329.

[45]

M.X. Dong, X. Feng, X.M. Xu, L. Hu, Y. Liu, S.Y. Jia, B. Li, W. Chen, Y.D. Wei, Integrated analysis reveals altered lipid and glucose metabolism and identifies NOTCH2 as a biomarker for Parkinson's disease related depression, Front. Mol. Neurosci. 11 (2018) 257.

[46]

S.M. Clark, J. Sand, T.C. Francis, A. Nagaraju, K.C. Michael, A.D. Keegan, A. Kusnecov, T.D. Gould, L.H. Tonelli, Immune status influences fear and anxiety responses in mice after acute stress exposure, Brain Behav. Immun. 38 (2014) 192-201.

[47]

K.Q. Fan, Y.Y. Li, H.L. Wang, X.T. Mao, J.X. Guo, F. Wang, L.J. Huang, Y.N. Li, X.Y. Ma, Z.J. Gao, W. Chen, D.D. Qian, W.J. Xue, Q. Cao, L. Zhang, L. Shen, L. Zhang, C. Tong, J.Y. Zhong, W. Lu, L. Lu, K.M. Ren, G. Zhong, Y. Wang, M. Tang, X.H. Feng, R.J. Chai, J. Jin, Stress-induced metabolic disorder in peripheral CD4t T cells leads to anxiety-like behavior, Cell 179 (4) (2019) 864-879.e19.

[48]

L. Singh, A.P. Singh, R. Bhatti, Mechanistic interplay of various mediators involved in mediating the neuroprotective effect of daphnetin, Pharmacol. Rep. 73 (5) (2021) 1220-1229.

[49]

Z. Hou, J. Zhang, K. Yu, F. Song, Irisin ameliorates the postoperative depressive-like behavior by reducing the surface expression of epidermal growth factor receptor in mice, Neurochem. Int. 135 (2020) 104705.

[50]

I. Mendez-David, L. Tritschler, Z.E. Ali, M.H. Damiens, M. Pallardy, D.J. David, S. Kerdine-Römer, A.M. Gardier, Nrf2-signaling and BDNF: a new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression, Neurosci. Lett. 597 (2015) 121-126.

[51]

Y. Yu, Y. Li, K. Qi, W. Xu, Y. Wei, Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway, Behav. Brain Res. 433 (2022) 114006.

[52]

G. Feipeng, X. Luxin, C. Beili, Y. Songhong, W. Wenting, L. Junmao, G. Qianfeng, Z. Lingyun, W. Jianxiong, Exploration of Ziziphi Spinosae Semen in treating insomnia based on network pharmacology strategy, Evid. Based Complement, Alternat. Med. 2021 (2021) 9888607.

[53]

Z. Bian, W. Zhang, J. Tang, Q. Fei, M. Hu, X. Chen, L. Su, C. Fei, D. Ji, C. Mao, H. Tong, X. Yuan, T. Lu, Mechanisms underlying the action of Ziziphi Spinosae Semen in the treatment of insomnia: a study involving network pharmacology and experimental validation, Front. Pharmacol. 12 (2021) 752211.

AI Summary AI Mindmap
PDF (1189KB)

910

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/