Potential application of sucrose acetate isobutyrate, and glyceryl monooleate for nanonization and bioavailability enhancement of rivaroxaban tablets

Adam A. Al-Shoubki , Mahmoud H. Teaima , Rehab Abdelmonem , Mohamed A. El-Nabarawi , Sammar Fathy Elhabal

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100015

PDF (1676KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100015 DOI: 10.1016/j.pscia.2023.100015
Research Article
research-article

Potential application of sucrose acetate isobutyrate, and glyceryl monooleate for nanonization and bioavailability enhancement of rivaroxaban tablets

Author information +
History +
PDF (1676KB)

Abstract

This study aimed to investigate the use of Sucrose acetate isobutyrate (SAIB) and Glyceryl monooleate (GMO) as co-formers for creating Cubosomes and SAIB-based nanodispersions of Rivaroxaban (RXB). The process utilized a modified melt dispersion technique with varying polymer: drug ratios (0.5:1, 0.75:1, and 1:1) and a fixed polymer: poloxamer 407 ratio (0.1:1). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE) were measured to determine the optimal formulas. The best-lyophilized formulas were then analyzed using Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), dissolution testing, and Pharmacokinetic (PK) studies. The results revealed significant correlations between polymer concentrations and various variables in cubosomal and SAIB-based nanodispersions. An increase in GMO concentration led to a decrease in PS, PDI, and ZP but an increase in EE and yield. Maintaining optimal GMO concentration is crucial for consistent nanoparticle formulations. In contrast, increasing SAIB concentration led to a decrease in PS and PDI but an increase in EE and yield. The drug release rates of different preparations were measured during the dissolution test. The best-lyophilized cubosome (L4) and the best-lyophilized SAIB-based nanodispersions (L8) showed significantly improved drug release compared to XARELTO®. L4 displayed the best dissolution rate, and L8 also had a reasonable rate. A PK study demonstrated that L4 and L8 had significantly better bioavailability than XARELTO®, possibly due to their improved solubility. This study suggests that SAIB and GMO can significantly enhance the solubility and bioavailability of RXB in nano preparations, leading to more efficient drug delivery. This new approach can also reduce the required dosage for the desired therapeutic effect. However, further research is needed to fully understand these polymers' potential benefits and limitations.

Keywords

Nanonization / Rivaroxaban / Sucrose acetate isobutyrate / Glyceryl monooleate / Bioavailability enhancement

Cite this article

Download citation ▾
Adam A. Al-Shoubki, Mahmoud H. Teaima, Rehab Abdelmonem, Mohamed A. El-Nabarawi, Sammar Fathy Elhabal. Potential application of sucrose acetate isobutyrate, and glyceryl monooleate for nanonization and bioavailability enhancement of rivaroxaban tablets. Pharmaceutical Science Advances, 2024, 2(1): 100015 DOI:10.1016/j.pscia.2023.100015

登录浏览全文

4963

注册一个新账户 忘记密码

Contributions

Adam A. Al-Shoubki: formal analysis, methodology, validation, writing—original draft. Mahmoud H. Teaima: investigation, supervision, writing—review and editing. Rehab Abdelmonem: validation, supervision, writing—review and editing. Mohamed A. El-Nabarawi: conceptualization, investigation, visualization, supervision, study administration. Sammar Fathy Elhabal: investigation, writing—review and editing. All authors have read and approved the final manuscript.

Funding information

This research received no funding.

Ethics approval

All procedures of animal study were approved and regularly controlled by the Animal Ethics Committee of Faculty of Pharmacy Cairo University (No. PT2.1.4) and all experiments were performed in accordance with the guidelines and regulations of this committee. All the procedures were also carried out in full accordance with the ARRIVE guidelines 2020 [40].

Declaration of competing interest

We, the authors of this manuscript, declare that there is no conflict of interest between us. We have no financial or personal relationships that could inappropriately influence our work. We have given full disclosure of any potential conflicts of interest to the Journal of Pharmaceutical Science Advances. We are committed to ensuring the integrity and objectivity of our research and writing, and we stand behind the accuracy and validity of our findings.

Acknowledgements

We express our gratitude to Sigma Pharmaceutical Industries, Quesna, Egypt for generously providing us with Rivaroxaban, Poloxamer 407, and Mannitol, which were essential components of our research.

References

[1]

I. Hernandez, Y. Zhang, Comparing stroke and bleeding with rivaroxaban and dabigatran in atrial fibrillation: analysis of the US medicare Part D data, Am. J. Cardiovasc. Drugs 17 (1) (2017 Feb)37-47, https://doi.org/10.1007/s40256-016-0189-9. PMID: 27637493; PMCID: PMC6572759.

[2]

J.H. Lee, H.S. Jeong, J.W. Jeong, T.S. Koo, D.K. Kim, Y.H. Cho, G.W. Lee, The development and optimization of hot-melt extruded amorphous solid dispersions containing rivaroxaban in combination with polymers, Pharmaceutics 13 (3) (2021 Mar 6)344, https://doi.org/10.3390/pharmaceutics13030344. PMID: 33800741; PMCID: PMC8001048.

[3]

J.W. Eikelboom, S.S. Jolly, E.P. Belley-Cote, R.P. Whitlock, S. Rangarajan, L. Xu, L. Heenan, S.I. Bangdiwala, M. Luz Diaz, R. Diaz, A. Yusufali, S. Kumar Sharma, W.M. Tarhuni, M. Hassany, A. Avezum, W. Harper, S. Wasserman, A. Almas, O. Drapkina, C. Felix, R.D. Lopes, O. Berwanger, P. Lopez-Jaramillo, S.S. Anand, J. Bosch, S. Choudhri, M.E. Farkouh, M. Loeb, S. Yusuf, Colchicine and the combination of rivaroxaban and aspirin in patients hospitalised with COVID-19 (ACT): an open-label, factorial, randomised, controlled trial, Lancet Respir. Med. 10 (12) (2022 Dec)1169-1177, https://doi.org/10.1016/S2213-2600(22)00298-3. Epub 2022 Oct 10. PMID: 36228641; PMCID: PMC9635892.

[4]

C.P. O'Kane, J.C.O. Avalon, J.L. Lacoste, W. Fang, C.M. Bianco, L. Davisson, K.L. Piechowski, Apixaban and rivaroxaban use for atrial fibrillation in patients with obesity and BMI ≥50 kg/m2, Pharmacotherapy 42 (2) (2022 Feb)112-118, https://doi.org/10.1002/phar.2651. Epub 2021 Dec 9. PMID: 34820876.

[5]

S.V. Jermain, C. Brough, R.O. Williams 3rd, Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - an update, Int. J. Pharm. 535 (1-2) (2018 Jan 15)379-392, https://doi.org/10.1016/j.ijpharm.2017.10.051. Epub 2017 Nov 8. PMID: 29128423.

[6]

K.A. Kravanja, M. Finśgar, Knez Ź, M. Knez Marevci, Supercritical fluid technologies for the incorporation of synthetic and natural active compounds into materials for drug formulation and delivery, Pharmaceutics 14 (8) (2022 Aug 11) 1670, https://doi.org/10.3390/pharmaceutics14081670. PMID: 36015296; PMCID: PMC9413081.

[7]

A.G. Nambiar, M. Singh, A.R. Mali, D.R. Serrano, R. Kumar, A.M. Healy, A.K. Agrawal, D. Kumar, Continuous manufacturing and molecular modeling of pharmaceutical amorphous solid dispersions, AAPS PharmSciTech 23 (7) (2022 Sep 2)249, https://doi.org/10.1208/s12249-022-02408-4. PMID: 36056225.

[8]

Y. Meng, F. Tan, J. Yao, Y. Cui, Y. Feng, Z. Li, Y. Wang, Y. Yang, W. Gong, M. Yang, X. Kong, C. Gao, Preparation, characterization, and pharmacokinetics of rivaroxaban cocrystals with enhanced in vitro and in vivo properties in beagle dogs, Int. J. Pharm. X 4 (2022 May 21) 100119, https://doi.org/10.1016/j.ijpx.2022.100119. PMID: 35663355; PMCID: PMC9160491.

[9]

X.Q. Liu, Z.R. Li, C.Y. Wang, Y.T. Chen, Z. Jiao, Is a lower dose of rivaroxaban required for asians? A systematic review of a population pharmacokinetics and pharmacodynamics analysis of rivaroxaban, Pharmaceutics 15 (2) (2023 Feb 9) 588, https://doi.org/10.3390/pharmaceutics15020588. PMID: 36839909; PMCID: PMC9964148.

[10]

M.J. Choi, M.R. Woo, K. Baek, J.H. Park, S. Joung, Y.S. Choi, H.G. Choi, S.G. Jin, Enhanced oral bioavailability of Rivaroxaban-Loaded microspheres by optimizing the polymer and surfactant based on molecular interaction mechanisms, Molecul. Pharmaceutics. Am. Chem. Soci. (2023 Jul 11), https://doi.org/10.1021/acs.molpharmaceut.3c00281. PMID: 37433746.

[11]

M.K. Elsayad, H.A. Mowafy, A.A. Zaky, A.M. Samy, Chitosan caged liposomes for improving oral bioavailability of rivaroxaban: in vitro and in vivo evaluation. Pharmaceutical Development and Technology, Informa 26 (3) (2021 Jan 6)316-327, https://doi.org/10.1080/10837450.2020.1870237. PMID: 33356742.

[12]

X. Xue, M. Cao, L. Ren, Y. Qian, G. Chen, Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and No food effect, AAPS PharmSciTech 19 (4) (2018 May)1847-1859, https://doi.org/10.1208/s12249-018-0991-6. Epub 2018 Apr 10. PMID: 29637496.

[13]

X. Luo, A. Saleem, U. Shafique, S. Sarwar, K. Ullah, M. Imran, A. Zeb, F.U. Din, Informa, Rivaroxaban-loaded SLNs with Treatment Potential of Deep Vein Thrombosis: In-Vitro, In-Vivo and Toxicity Evaluation, vols. 1-13, Pharmaceutical Development and Technology, 2023 Jul 19, https://doi.org/10.1080/10837450.2023.2231069. PMID: 37366661.

[14]

MdK. Anwer, M. A. Mohammad, M. Iqbal, M. N. Ansari, E. Ezzeldin, F. Fatima, S. Alshahrani, M. F. Aldawsari, A. Alalaiwe, A. A. Alzahrani, A. M. Aldayel, Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect, PMID:31898270, J. Thromb. Thrombolysis 49 (3) (2020 Jan 2)404-412, https://doi.org/10.1007/s11239-019-02022-5. Springer Sciencet Business Media.

[15]

P. Shah, M.P. Patel, J. Shah, A.B. Nair, S. Kotta, B. Vyas, Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban, 35467325, Drug Deliv. Translat. Res. 12 (12) (2022 Apr 25)3029-3046, https://doi.org/10.1007/s13346-022-01168-9. Springer SciencetBusiness Media.

[16]

J. Maincent, F. Zhang, Recent advances in abuse-deterrent technologies for the delivery of opioids, Int. J. Pharm. 510 (1) (2016 Aug 20)57-72, https://doi.org/10.1016/j.ijpharm.2016.06.012. Epub 2016 Jun 9. PMID: 27291971.

[17]

C. Matschke, U. Isele, P. van Hoogevest, A. Fahr, Sustained-release injectables formed in situ and their potential use for veterinary products, J. Contr. Release 85 (1-3) (2002 Dec 13)1-15, https://doi.org/10.1016/s0168-3659(02)00266-3. PMID: 12480306.

[18]

A.H. Elshafeey, R. Zayed, M.H. Shukr, I. Elsayed, Sucrose acetate isobutyrate based nanovesicles: a promising platform for drug delivery and bioavailability enhancement, J. Drug Deliv. Sci. Technol. 58 (2020) 101806, https://doi.org/10.1016/j.jddst.2020.101806.

[19]

A. Makhlouf, T. Elnawawy, Hair regrowth boosting via minoxidil cubosomes: formulation development, in vivo hair regrowth evaluation, histopathological examination and confocal laser microscopy imaging, Int. J. Pharm. 634 (2023 Mar 5) 122665, https://doi.org/10.1016/j.ijpharm.2023.122665. Epub 2023 Feb 1. PMID: 36736676.

[20]

S. Adwan, R. Abu-Dahab, A.G. Al-Bakri, A. Sallam, Glyceryl monooleate-based otic delivery system of ofloxacin: release profile and bactericidal activity, Pharmaceut. Dev. Technol. 20 (3) (2015 May)361-366, https://doi.org/10.3109/10837450.2013.871030. Epub 2014 Jan 6. PMID: 24392877.

[21]

J. Barauskas, M. Johnsson, F. Joabsson, F. Tiberg, Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability, Langmuir 21 (6) (2005 Mar 15)2569-2577, https://doi.org/10.1021/la047590p. PMID: 15752054.

[22]

T.G. Meikle, D. Dharmadana, S.V. Hoffmann, N.C. Jones, C.J. Drummond, C.E. Conn, Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles, J. Colloid Interface Sci. 587 (2021 Apr) 90-100, https://doi.org/10.1016/j.jcis.2020.11.124. Epub 2020 Dec 2. PMID: 33360913.

[23]

M. Yasser, M. Teaima, M. El-Nabarawi, R.A. El-Monem, Cubosomal based oral tablet for controlled drug delivery of telmisartan: formulation, in-vitro evaluation and invivo comparative pharmacokinetic study in rabbits, Drug Dev. Ind. Pharm. 45 (6) (2019 Jun)981-994, https://doi.org/10.1080/03639045.2019.1590392. Epub 2019 Mar 19. PMID: 30865478.

[24]

N.A. Shoman, R.M. Gebreel, M.A. El-Nabarawi, A. Attia, Optimization of hyaluronan-enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation, Drug Deliv. 30 (1) (2023 Dec)2162162, https://doi.org/10.1080/10717544.2022.2162162. PMID: 36587627; PMCID: PMC9943252.

[25]

J. Lai, J. Chen, Y. Lu, J. Sun, F. Hu, Z. Yin, W. Wu, Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin, AAPS PharmSciTech 10 (3) (2009) 960-966, https://doi.org/10.1208/s12249-009-9292-4. Epub 2009 Jul 28. PMID: 19636709; PMCID: PMC2802151.

[26]

H. Umar, H.A. Wahab, A.M. Gazzali, H. Tahir, W. Ahmad, Cubosomes: design, development, and tumor-targeted drug delivery applications, Polymers 14 (15) (2022 Jul 31) 3118, https://doi.org/10.3390/polym14153118. PMID: 35956633; PMCID: PMC9371202.

[27]

S. Harloff-Helleberg, L.A.L. Fliervoet, M. Fanø, M. Schmitt, M. Antopolski, A. Urtti, H.M. Nielsen, Exploring the mucoadhesive behavior of sucrose acetate isobutyrate: a novel excipient for oral delivery of biopharmaceuticals, Drug Deliv. 26 (1) (2019 Dec)532-541, https://doi.org/10.1080/10717544.2019.1606866. PMID: 31090468; PMCID: PMC6534213.

[28]

A.A. Mabrouk, N.S. El-Mezayen, M.I. Tadros, O.N. El-Gazayerly, W.M. El-Refaie, Novel mucoadhesive celecoxib-loaded cubosomal sponges: anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma, Eur. J. Pharm. Biopharm. 182 (2023 Jan) 62-80, https://doi.org/10.1016/j.ejpb.2022.12.003. Epub 2022 Dec 10. PMID: 36513316.

[29]

F. Gouveia, J. Bicker, J. Santos, M. Rocha, G. Alves, A. Falcão, A. Fortuna, Development, validation and application of a new HPLC-DAD method for simultaneous quantification of apixaban, dabigatran, edoxaban and rivaroxaban in human plasma, J. Pharm. Biomed. Anal. 181 (2020 Mar 20) 113109, https://doi.org/10.1016/j.jpba.2020.113109. Epub 2020 Jan 14. PMID: 31981828.

[30]

S. Marathe, G. Shadambikar, T. Mehraj, S.P. Sulochana, N. Dudhipala, S. Majumdar, Development of α-tocopherol succinate-based nanostructured lipid carriers for delivery of paclitaxel, Pharmaceutics 14 (5) (2022 May 11) 1034, https://doi.org/10.3390/pharmaceutics14051034. PMID: 35631620; PMCID: PMC9145488.

[31]

S.F. Elhabal, S.A. Ghaffar, R. Hager, N.A. Elzohairy, M.M. Khalifa, P.M. Mohie, R.A. Gad, N.N. Omar, M.H. Elkomy, M.A. Khasawneh, N. Abdelaal, Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: in-vitro, ex-vivo and in-vivo studies, Int. J. Pharm. X 5 (2023 Feb 28) 100174, https://doi.org/10.1016/j.ijpx.2023.100174. PMID: 36908304; PMCID: PMC9992749.

[32]

M.H. Teaima, A.M. El Mohamady, M.A. El-Nabarawi, A.I. Mohamed, Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery, Drug Dev. Ind. Pharm. 46 (5) (2020 May)751-761, https://doi.org/10.1080/03639045.2020.1753061. Epub 2020 Apr 20. PMID: 32250181.

[33]

A.N. ElMeshad, K.M. Abdel-Haleem, N.A. Abdel Gawad, M.A. El-Nabarawi, N.M. Sheta, Core in cup ethylmorphine hydrochloride tablet for dual fast and sustained pain relief: formulation, characterization, and pharmacokinetic study, AAPS PharmSciTech 21 (7) (2020 Aug 27)244, https://doi.org/10.1208/s12249-020-01759-0. PMID: 32856114.

[34]

N.M. Sheta, S.A. Boshra, M.A. Mamdouh, K.M. Abdel-Haleem, Design and optimization of silymarin loaded in lyophilized fast melt tablets to attenuate lung toxicity induced via HgCl2 in rats, Drug Deliv. 29 (1) (2022 Dec)1299-1311, https://doi.org/10.1080/10717544.2022.2068696. PMID: 35470762; PMCID: PMC9045763.

[35]

M. Zhang, B. Wu, S. Zhang, L. Wang, Q. Hu, D. Liu, X. Chen, Characterizing the physicochemical properties of two weakly basic drugs and the precipitates obtained from biorelevant media, Pharmaceutics 14 (2) (2022 Jan 29) 330, https://doi.org/10.3390/pharmaceutics14020330. PMID: 35214062; PMCID: PMC8879660.

[36]

E. Sjöholm, R. Mathiyalagan, L. Lindfors, X. Wang, S. Ojala, N. Sandler, Semi-solid extrusion 3D printing of tailored ChewTs for veterinary use - a focus on spectrophotometric quantification of gabapentin, Eur. J. Pharmaceut. Sci. 174 (2022 Jul 1) 106190, https://doi.org/10.1016/j.ejps.2022.106190. Epub 2022 Apr 17. PMID: 35443212.

[37]

A.M. Eisa, N.A. El-Megrab, H.M. El-Nahas, Formulation and evaluation of fast dissolving tablets of haloperidol solid dispersion, Saudi Pharmaceut. J. 30 (11) (2022 Nov)1589-1602, https://doi.org/10.1016/j.jsps.2022.09.002. Epub 2022 Sep 9. PMID: 36465849; PMCID: PMC9715955.

[38]

B. Arafat, M. Wojsz, A. Isreb, R.T. Forbes, M. Isreb, W. Ahmed, T. Arafat, M.A. Alhnan, Tablet fragmentation without a disintegrant: a novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets, Eur. J. Pharmaceut. Sci. 118 (2018 Jun 15) 191-199, https://doi.org/10.1016/j.ejps.2018.03.019. Epub 2018 Mar 17. PMID: 29559404.

[39]

E. Limpongsa, P. Tabboon, T. Pongjanyakul, N. Jaipakdee, Preparation and evaluation of directly compressible orally disintegrating tablets of cannabidiol formulated using liquisolid technique, Pharmaceutics 14 (11) (2022 Nov 8) 2407, https://doi.org/10.3390/pharmaceutics14112407. PMID: 36365225; PMCID: PMC9695279.

[40]

N. Percie du Sert, A. Ahluwalia, S. Alam, M.T. Avey, M. Baker, W.J. Browne, A. Clark, I.C. Cuthill, U. Dirnagl, M. Emerson, P. Garner, S.T. Holgate, D.W. Howells, V. Hurst, N.A. Karp, S.E. Lazic, K. Lidster, C.J. MacCallum, M. Macleod, E.J. Pearl, O.H. Petersen, F. Rawle, P. Reynolds, K. Rooney, E.S. Sena, S.D. Silberberg, T. Steckler, H. Würbel,Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0, PLoS Biol. 18 (7) (2020 Jul 14)e3000411, https://doi.org/10.1371/journal.pbio.3000411. PMID: 32663221; PMCID: PMC7360025.

[41]

A.Z. Alanazi, S.S. Al-Rejaie, M.M. Ahmed, K. Alhazzani, K. Alhosaini, H.M. As Sobeai, S. Alsanea, P. Alam, O.M. Almarfadi, A.S. Alqahtani, A.S. Alhamed, M. Alqinyah, H.N. Alhamami, M.F. Almutery, M. Mohany, Protective role of Dodonaea viscosa extract against streptozotocin-induced hepatotoxicity and nephrotoxicity in rats, Saudi Pharmaceut. J. 31 (8) (2023 Aug) 101669, https://doi.org/10.1016/j.jsps.2023.06.002. Epub 2023 Jun 9. PMID: 37576853; PMCID: PMC10415224.

[42]

J. Barauskas, C. Cervin, M. Jankunec, M. Spandyreva, K. Ribokaite, F. Tiberg, M. Johnsson, Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes, Int. J. Pharm. 391 (1-2) (2010 May 31)284-291, https://doi.org/10.1016/j.ijpharm.2010.03.016. Epub 2010 Mar 7. PMID: 20214966.

[43]

M.M. Gabr, S.M. Mortada, M.A. Sallam, Hexagonal liquid crystalline nanodispersions proven superiority for enhanced oral delivery of rosuvastatin: in vitro characterization and in vivo pharmacokinetic study, J. Pharmaceut. Sci. 106 (10) (2017 Oct)3103-3112, https://doi.org/10.1016/j.xphs.2017.04.060. Epub 2017 May 4. PMID: 28479357.

[44]

Y. Wei, Y. Xie, Z. Cai, Y. Guo, H. Zhang, Interfacial rheology, emulsifying property and emulsion stability of glyceryl monooleate-modified corn fiber gum, Food Chem. 343 (2021 May 1) 128416, https://doi.org/10.1016/j.foodchem.2020.128416. Epub 2020 Oct 20. PMID: 33127225.

[45]

H.A. El-Enin, A.H. Al-Shanbari, Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients, Saudi Pharmaceut. J. 26 (6) (2018 Sep)790-800, https://doi.org/10.1016/j.jsps.2018.04.004. Epub 2018 Apr 3. PMID: 30202219; PMCID: PMC6128721.

[46]

P.P. Ige, R.K. Baria, S.G. Gattani, Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability, Colloids Surf. B Biointerfaces 108 (2013 Aug 1) 366-373, https://doi.org/10.1016/j.colsurfb.2013.02.043. Epub 2013 Mar 23. PMID: 23602990.

[47]

A. Kapourani, E. Vardaka, K. Katopodis, K. Kachrimanis, P. Barmpalexis, Rivaroxaban polymeric amorphous solid dispersions: moisture-induced thermodynamic phase behavior and intermolecular interactions, Eur. J. Pharm. Biopharm. 145 (2019 Dec) 98-112, https://doi.org/10.1016/j.ejpb.2019.10.010. Epub 2019 Nov 4. PMID: 31698042.

[48]

T. Madheswaran, R. Baskaran, C.S. Yong, B.K. Yoo, Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants, AAPS PharmSciTech 15 (1) (2014 Feb)44-51, https://doi.org/10.1208/s12249-013-0034-2. Epub 2013 Sep 25. PMID: 24222268; PMCID: PMC3909160.

[49]

D. Meng, J. Song, Y. Yi, J. Li, T. Zhang, Y. Shu, X. Wu, Controlled released naringinloaded liposome/sucrose acetate isobutyrate hybrid depot for osteogenesis in vitro and in vivo, Front. Bioeng. Biotechnol. 10 (2023 Jan 5) 1097178, https://doi.org/10.3389/fbioe.2022.1097178. PMID: 36686256; PMCID: PMC9849584.

[50]

K.H. Ullah, F. Rasheed, I. Naz, N. Ul Haq, H. Fatima, N. Kanwal, T. Ur-Rehman, Chitosan nanoparticles loaded poloxamer 407 gel for transungual delivery of terbinafine HCl, Pharmaceutics 14 (11) (2022 Oct 31) 2353, https://doi.org/10.3390/pharmaceutics14112353. PMID: 36365171; PMCID: PMC9698022.

[51]

M. Isenor, S.G. Kaminskyj, R.J. Rodriguez, R.S. Redman, K.M. Gough, Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy, Analyst 135 (12) (2010 Dec)3249-3254, https://doi.org/10.1039/c0an00534g. Epub 2010 Oct 21. PMID: 20963233.

[52]

E.G. Andriotis, P.K. Monou, G. Komis, N. Bouropoulos, C. Ritzoulis, G. Delis, E. Kiosis, G. Arsenos, D.G. Fatouros, 11, Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels. Gels, vol. 8, 2022 Oct 31, p. 705, https://doi.org/10.3390/gels8110705. PMID: 36354613; PMCID: PMC9689941.

[53]

A.E. Mengesha, R.J. Wydra, J.Z. Hilt, P.M. Bummer, Binary blend of glyceryl monooleate and glyceryl monostearate for magnetically induced thermo-responsive local drug delivery system, Pharm. Res. ( N. Y.) 30 (12) (2013 Dec)3214-3224, https://doi.org/10.1007/s11095-013-1230-1. Epub 2013 Oct 25. PMID: 24158728.

[54]

R.K. Patel, S. Jonnalagadda, P.K. Gupta, Use of flory-huggins interaction parameter and contact angle values to predict the suitability of the drug-polymer system for the production and stability of nanosuspensions, Pharm. Res. (N. Y.) 39 (5) (2022 May)1001-1017, https://doi.org/10.1007/s11095-022-03269-z. Epub 2022 May 3. PMID: 35505262.

[55]

S.G. Rao, P.K. Parmar, K.V. Reddy, A.K. Bansal, Preparation and characterization of Co-processed mannitol and sorbitol using NanoCrySP Technology, AAPS PharmSciTech 22 (5) (2021 Jul 6)201, https://doi.org/10.1208/s12249-021-02071-1. PMID: 34231193.

AI Summary AI Mindmap
PDF (1676KB)

252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/