Matrine induces V-ATPase-dependent cytoplasmic vacuolation and inhibits the function of the lysosome in leukemia cells

Fanfan Yang , Wang-jing Zhong , Jialin Cao , Junyu Tan , Bohong Li , Lingdi Ma

Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100013

PDF (4157KB)
Pharmaceutical Science Advances ›› 2024, Vol. 2 ›› Issue (1) : 100013 DOI: 10.1016/j.pscia.2023.100013
Research Article
research-article

Matrine induces V-ATPase-dependent cytoplasmic vacuolation and inhibits the function of the lysosome in leukemia cells

Author information +
History +
PDF (4157KB)

Abstract

Matrine is the main component extracted from legumes and has extensive anti-cancer effects; however, its molecular mechanism is unclear. In our study, we found that matrine induced vacuolation in leukemia cells is closely related to cell proliferation inhibition. Vacuolization was reversed after matrine removal. The neutral red staining assay indicated that the matrine-induced vacuoles were acidic, and the vacuoles originated mostly from the lysosome or endosome, as observed by transmission electron microscope (TEM) and fluorescence microscopy localization of LAMP-GFP. Furthermore, single-cell RNA sequencing (RNA-seq) demonstrated that the expression of vacuolation- and lysosomal-related genes were up-regulated after matrine treatment, and western blot (WB) and flow cytometry (FCM) analysis confirmed that matrine inhibits intracellular proteolytic enzyme expression and activity, suggesting that matrine may inhibit lysosomal function. In addition, we identified that matrine significantly up-regulated the expression levels of vacuolar ATPase (V-ATPase) subunits in cells, and the V-ATPase inhibitor effectively reversed the occurrence of cell vacuoles, suggesting that V-ATPase plays an important role in matrine-induced vacuoles. The molecular structure of matrine was further analyzed, and the protonation of matrine in lysosomes to activate V-ATPase may be a direct cause of vacuole formation. Our results revealed a new molecular mechanism by which matrine inhibit leukemia cell proliferation.

Keywords

Matrine / Vacuolization / Lysosome / Protonation / V-ATPase

Cite this article

Download citation ▾
Fanfan Yang, Wang-jing Zhong, Jialin Cao, Junyu Tan, Bohong Li, Lingdi Ma. Matrine induces V-ATPase-dependent cytoplasmic vacuolation and inhibits the function of the lysosome in leukemia cells. Pharmaceutical Science Advances, 2024, 2(1): 100013 DOI:10.1016/j.pscia.2023.100013

登录浏览全文

4963

注册一个新账户 忘记密码

Date availability

The accession number for the RNA-Seq of the three leukemia cell lines treated with matrine reported in this article were deposited in the Gene Expression Omnibus (GEO: GSE201309).

Author contributions

F.F.Y. designed the study, performed and analyzed all experiments, and wrote the manuscript. W.-J.Z., J.L.C., J.Y.T., and B·H.L. performed the experiments and interpreted the data. L.D.M. supervised the project, designed the study, and wrote the manuscript. All the authors have read and approved the final manuscript.

Funding

This work was supported by the National Nature Science Foundation of China (81673644), the Research Projects of Guangdong Provincial Bureau of Traditional Chinese Medicine (20181261), and the Science and Technology Plan (Medical and Health) Project of Huizhou (2018Y158).

Ethics approval

Not applicable.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

Not applicable.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2023.100013.

References

[1]

Y. Li, G. Wang, J. Liu, et al., Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: bioactivities, structure-activity relationships and preliminary molecular mechanisms, Eur. J. Med. Chem. 188 (2020) 111972. https://doi.org/10.1016/j.ejmech.2019.111972.

[2]

L. Ma, Z. Xu, J. Wang, et al., Matrine inhibits BCR/ABL mediated ERK/MAPK pathway in human leukemia cells, Oncotarget 8 (65) (2017) 108880-108889. https://doi.org/10.18632/oncotarget.22433.

[3]

Y. Wang, Y. Liu, J. Jiang, et al., Antitumor effects of matrine on cancer stem like cells isolated from the human liver cancer SMMC 7721 cell line, Oncol. Lett. 15 (2) (2018) 1777-1782. https://doi.org/10.3892/ol.2017.7483.

[4]

Y.Q. Liu, Y. Li, J. Qin, et al., Matrine reduces proliferation of human lung cancer cells by inducing apoptosis and changing miRNA expression profiles, Asian Pac. J. Cancer Prev. APJCP 15 (5) (2014) 2169-2177. https://doi.org/10.7314/APJCP.2014.15.5.2169.

[5]

X. Wu, J. Zhou, D. Cai, et al., Matrine inhibits the metastatic properties of human cervical cancer cells via downregulating the p 38 signaling pathway, Oncol. Rep. 38 (2) (2017) 1312-1320. https://doi.org/10.3892/or.2017.5787.

[6]

L.Q. Li, X.L. Li, L. Wang, et al., Matrine inhibits breast cancer growth via miR-21/ PTEN/Akt pathway in MCF-7 cells, Cell. Physiol. Biochem. 30 (3) (2012) 631-641. https://doi.org/10.1159/000341444.

[7]

L. Ma, Z. Zhu, L. Jiang, et al., Matrine suppresses cell growth of human chronic myeloid leukemia cells via its inhibition of the interleukin-6/Janus activated kinase/signal transducer and activator of transcription 3 signaling cohort, Leuk. Lymphoma 56 (10) (2015) 2923-2930. https://doi.org/10.3109/10428194.2015.1007507.

[8]

G. Lin, Y. Wu, F. Cai, et al., Matrine promotes human myeloid leukemia cells apoptosis through Warburg effect mediated by Hexokinase 2, Front. Pharmacol. 10 (2019) 1069. https://doi.org/10.3389/fphar.2019.01069.

[9]

M.E. Guicciardi, S.F. Bronk, N.W. Werneburg, et al., cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis, Am. J. Physiol. Gastrointest. Liver Physiol. 292 (5) (2007) G1337-G1346. https://doi.org/10.1152/ajpgi.00497.2006.

[10]

Y. Li, Y. Zhang, Q. Gan, et al., C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death, Protein Cell 9 (12) (2018) 1013-1026. https://doi.org/10.1007/s13238-018-0520-0.

[11]

Y. Zhou, X. Zhou, X. Huang, et al., Lysosome-mediated cytotoxic autophagy contributes to tea polysaccharide-induced colon cancer cell death via mTOR-TFEB signaling, J. Agric. Food Chem. 69 (2) (2021) 686-697. https://doi.org/10.1021/acs.jafc.0c07166.

[12]

R.C. Taylor, S.P. Cullen, S.J. Martin, Apoptosis: controlled demolition at the cellular level, Nat. Rev. Mol. Cell Biol. 9 (3) (2008) 231-241. https://doi.org/10.1038/nrm2312.

[13]

J. Zou, T. Kawai, T. Tsuchida, et al., Poly IC triggers a cathepsin D- and IPS-1- dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis, Immunity 38 (4) (2013) 717-728. https://doi.org/10.1016/j.immuni.2012.12.007.

[14]

P. Boya, G. Kroemer, Lysosomal membrane permeabilization and cell death, Traffic 19 (12) (2018) 918-931. https://doi.org/10.1111/tra.12613.

[15]

S. Torii, R. Shintoku, C. Kubota, et al., An essential role for functional lysosomes in ferroptosis of cancer cells, Biochem. J. 473 (6) (2016) 769-777. https://doi.org/10.1042/BJ20150658.

[16]

S. Liu, Y. Li, H.M.C. Choi, et al., Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK 3 proteins and potentiation of necroptosis, Cell Death Dis. 9 (5) (2018) 476. https://doi.org/10.1038/s41419-018-0469-1.

[17]

S. Rafiq, S.L. McKenna, S. Muller, et al., Lysosomes in acute myeloid leukemia: potential therapeutic targets? Leukemia 35 (10) (2021) 2759-2770. https://doi.org/10.1038/s41375-021-01388-x.

[18]

A.V. Shubin, I.V. Demidyuk, A.A. Komissarov, et al., Cytoplasmic vacuolization in cell death and survival, Oncotarget 7 (34) (2016) 55863-55889. https://doi.org/10.18632/oncotarget.10150.

[19]

C. de Duve, T. de Barsy, B. Poole, et al., Commentary. Lysosomotropic agents, Biochem. Pharmacol. 23 (18) (1974) 2495-2531. https://doi.org/10.1016/0006-2952(74)90174-9.

[20]

X. Li, C. Sui, Q. Chen, et al., Promotion of autophagy at the maturation step by IL-6 is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity, Mol. Cell. Biochem. 380 (1-2) (2013) 219-227. https://doi.org/10.1007/s11010-013-1676-9.

[21]

P. Peng, D. Jia, L. Cao, et al., Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells, J. Ethnopharmacol. 266 (2021) 113446. https://doi.org/10.1016/j.jep.2020.113446.

[22]

T. Aki, A. Nara, K. Uemura, Cytoplasmic vacuolization during exposure to drugs and other substances, Cell Biol. Toxicol. 28 (3) (2012) 125-131. https://doi.org/10.1007/s10565-012-9212-3.

[23]

L. Brisson, P. Bański, M. Sboarina, et al., Lactate dehydrogenase B controls lysosome activity and autophagy in cancer, Cancer Cell 30 (3) (2016) 418-431. https://doi.org/10.1016/j.ccell.2016.08.005.

[24]

K.W. Beyenbach, H. Wieczorek, The V-type Ht ATPase: molecular structure and function, physiological roles and regulation, J. Exp. Biol. 209 (Pt 4) (2006) 577-589. https://doi.org/10.1242/jeb.02014.

[25]

M.J. Clague, S. Urbé, F. Aniento, et al., Vacuolar ATPase activity is required for endosomal carrier vesicle formation, J. Biol. Chem. 269 (1) (1994) 21-24.

[26]

S. Banerjee, K. Clapp, M. Tarsio, et al., Interaction of the late endo-lysosomal lipid PI (3,5) P 2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance, J. Biol. Chem. 294 (23) (2019) 9161-9171. https://doi.org/10.1074/jbc.RA119.008552.

[27]

H. Hino, N. Iriyama, H. Kokuba, et al., Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes, Cancer Sci. 111 (6) (2020) 2132-2145. https://doi.org/10.1111/cas.14419.

[28]

M. Futai, G.H. Sun-Wada, Y. Wada, M. Nakanishi-Matsui, et al., Vacuolar-type ATPase:a proton pump to lysosomal trafficking, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95 (6) (2019) 261-277. https://doi.org/10.2183/pjab.95.018.

[29]

M.J. Clague, S. Urbé, F. Aniento, et al., Vacuolar ATPase activity is required for endosomal carrier vesicle formation, J. Biol. Chem. 269 (1) (1994) 21-24.

[30]

M. Huss, G. Ingenhorst, S. König, et al., Concanamycin A the specific inhibitor of VATPases, binds to the V (0) subunit c, J. Biol. Chem. 277 (43) (2002) 40544-40548. https://doi.org/10.1074/jbc.M207345200.

[31]

K. Zheng, Y. Jiang, C. Liao, et al., NOX2-Mediated TFEB activation and vacuolization regulate lysosome-associated cell death induced by gypenoside L, a saponin isolated from gynostemma pentaphyllum, J. Agric. Food Chem. 65 (31) (2017) 6625-6637. https://doi.org/10.1021/acs.jafc.7b02296.

[32]

J. Liu, M. Ying, B. Wu, et al., Ethanol extract of the infructescence of platycarya strobilacea Sieb. et Zucc. induces methuosis of human nasopharyngeal carcinoma cells, Evid Based Complement Alternat. Med. 2020 (2020) 2760979. https://doi.org/10.1155/2020/2760979.

[33]

H. Bhanot, A.M. Young, J.H. Overmeyer, et al., Induction of nonapoptotic cell death by activated ras requires inverse regulation of Rac1 and Arf6, Mol. Cancer Res. 8 (10) (2010) 1358-1374. https://doi.org/10.1158/1541-7786.MCR-10-0090.

[34]

J.H. Overmeyer, A. Kaul, E.E. Johnson, et al., Active ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis, Mol. Cancer Res. 6 (6) (2008) 965-977. https://doi.org/10.1158/1541-7786.MCR-07-2036.

[35]

M.E. Guicciardi, S.F. Bronk, N.W. Werneburg, et al., cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis, Am. J. Physiol. Gastrointest. Liver Physiol. 292 (5) (2007) G1337-G1346. https://doi.org/10.1152/ajpgi.00497.2006.

[36]

D.M. Hollenstein, C. Kraft, Autophagosomes are formed at a distinct cellular structure, Curr. Opin. Cell Biol. 65 (2020) 50-57. https://doi.org/10.1016/j.ceb.2020.02.012.

[37]

J. Zhang, Y. Li, T. Liu, et al., Antitumor effect of matrine in human hepatoma G 2 cells by inducing apoptosis and autophagy, WJG 16 (34) (2010) 4281-4290. https://doi.org/10.3748/wjg.v16.i34.4281.

[38]

Z. Wang, J. Zhang, Y. Wang, et al., Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases, Carcinogenesis 34 (1) (2013) 128-138. https://doi.org/10.1093/carcin/bgs295.

[39]

M. Borkowska, M. Siek, D.V. Kolygina, et al., Targeted crystallization of mixedcharge nanoparticles in lysosomes induces selective death of cancer cells, Nat. Nanotechnol. 15 (4) (2020) 331-341. https://doi.org/10.1038/s41565-020-0643-3.

[40]

W. Du, M. Gu, M. Hu, et al., Lysosomal Zn2t release triggers rapid, mitochondriamediated, non-apoptotic cell death in metastatic melanoma, Cell Rep 37 (3) (2021) 109848. https://doi.org/10.1016/j.celrep.2021.109848.

[41]

M.J. Morgan, B.E. Fitzwalter, C.R. Owens, et al., Metastatic cells are preferentially vulnerable to lysosomal inhibition, Proc. Natl. Acad. Sci. U.S.A. 115 (36) (2018) E8479-E8488. https://doi.org/10.1073/pnas.1706526115.

[42]

S. Ohkuma, B. Poole, Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances, J. Cell Biol. 90 (3) (1981) 656-664. https://doi.org/10.1083/jcb.90.3.656.

[43]

P. Peng, D. Jia, L. Cao, et al., Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells, J. Ethnopharmacol. 266 (2021) 113446. https://doi.org/10.1016/j.jep.2020.113446.

[44]

S.A. Rudge, D.M. Anderson, S.D. Emr,Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5) P2-specific phosphatase, Mol. Biol. Cell. 15 (1) (2004) 24-36. https://doi.org/10.1091/mbc.e03-05-0297.

[45]

L.M. Compton, O.C. Ikonomov, D. Sbrissa, et al., Active vacuolar Ht ATPase and functional cycle of Rab 5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency, Am. J. Physiol. Cell Physiol. 311 (3) (2016). https://doi.org/10.1152/ajpcell.00215.2016.

[46]

Z.N. Wilson, A.L. Scott, R.D. Dowell, et al., PI (3,5) P 2 controls vacuole potassium transport to support cellular osmoregulation, Mol. Biol. Cell. 29 (13) (2018) 1718-1731. https://doi.org/10.1091/mbc.E18-01-0015.

AI Summary AI Mindmap
PDF (4157KB)

276

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/