3D gamma analysis between treatment plans for nominally beam-matched medical linear accelerators using PyMedPhys

Fada Guan , William Donahue , Simon Biggs , Matthew Jennings , Emily Draeger , Huixiao Chen , Yuenan Wang , Ngoc Nguyen , David J. Carlson , Zhe Chen , Dae Yup Han

Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (4) : 191 -199.

PDF
Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (4) : 191 -199. DOI: 10.1002/pro6.1247
ORIGINAL ARTICLE

3D gamma analysis between treatment plans for nominally beam-matched medical linear accelerators using PyMedPhys

Author information +
History +
PDF

Abstract

Beam-matched linear accelerators (linacs) enable flexible patient scheduling and efficient treatment delivery in the event of unexpected machine downtime. The purpose of this study was to test the feasibility of 3D gamma index as an additional metric beyond standard measurement-based comparisons for more efficient evaluation of treatment plans between linacs with nominally matched beam models to ensure safe patient transfer. Seventeen 3D conformal radiotherapy (3DCRT) plans and thirty-six volumetric-modulated radiation therapy (VMAT) plans for different disease sites were selected from the original linac. An in-house script was used to automatically create new plans for the target linac and calculate dose using parameters of the original plans. 3D gamma analysis was performed to compare plan dose distributions between the target and original linacs using PyMedPhys. The 2%/2 mm gamma pass (γ≤1) rate was >99.99% for all 3DCRT plans. The median 1%/1 mm pass rate was 99.86% but two cases failed (< 90%). For VMAT plans, the median and minimum 2%/2mmgamma pass rateswere 99.43% and 93.81%. For 1%/1mm, the median pass rate was 92.02% but ten cases failed. The results indicated using 3D gamma index can enhance the confidence and add an extra layer for safe patient transfer.

Keywords

3D gamma analysis / beam matching / treatment plans

Cite this article

Download citation ▾
Fada Guan,William Donahue,Simon Biggs,Matthew Jennings,Emily Draeger,Huixiao Chen,Yuenan Wang,Ngoc Nguyen,David J. Carlson,Zhe Chen,Dae Yup Han. 3D gamma analysis between treatment plans for nominally beam-matched medical linear accelerators using PyMedPhys. Precision Radiation Oncology, 2024, 8(4): 191-199 DOI:10.1002/pro6.1247

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SjöströmD, Bjelkengren U, OttossonW, BehrensCF. A beammatching concept for medical linear accelerators. Acta Oncol. 2009;48(2):192-200.

[2]

Glide-HurstC, BellonM, FosterR, et al. Commissioning of the Varian TrueBeam linear accelerator: a multi-institutional study. Med Phys. 2013;40(3):031719.

[3]

YousifYAM, Gastaldo J, BaldockC. Golden beam data provided by linear acceleratormanufacturers should be used in the commissioning of treatment planning systems. Phys Eng Sci Med. 2022;45(2):407-411.

[4]

HrbacekJ, Depuydt T, NulensA, SwinnenA, Van den Heuvel F. Quantitative evaluation of a beam-matching procedure using onedimensional gamma analysis. Med Phys. 2007;34(7):2917-2927.

[5]

FirmansyahO, Firmansyah A, SunaryatiS, et al. Implementation of beam matching concept for the new installed Elekta precise treatment system medical LINACs in Indonesia. At Indones. 2021;47:181-189.

[6]

LiY, WuW, YuanW, et al. A method for selecting reference beam model of VMAT plans with three 6MV beam-matched linear accelerators during radiation oncology. Sci Rep. 2023;13(1):10131.

[7]

LethukuthulaN, Nicolas R, LutendoN, NyathiM. A Study of the TPS Based Beam-Matching Concept for Medical Linear Accelerators at a Tertiary Hospital. Int J Med Phys, Clin Eng Radiat Oncol. 2024;13:16-25.

[8]

ViragV, GhemisD. An intercomparison of multiple beam matched linear accelerators commissioned according to the accelerated go live program. INVITED TALKS, 79.

[9]

SistaniS, Babaeifar H, KhoramianD, et al. Beam matching evaluation of two similar linear accelerators. Radiat Prot Dosimetry. 2023;199(4):347-355.

[10]

RijkenJ, Schachenmayr H, CroweS, KairnT, TrappJ. Distributive quality assurance and delivery of stereotactic ablative radiotherapy treatments amongst beam matched linear accelerators: A feasibility study. J Appl Clin Med Phys. 2019;20(4):99-105.

[11]

DonmoonT, Wattanachaiyasit S, KaewboonpermU, MeennuchE, Klaitong C. presented at the Journal of Physics: Conference Series2020 (unpublished).

[12]

KhoudriS, ChaouiZ. Dosimetric beam matching analysis of MV photons and electrons therapy. Int J Radiat Res. 2022;20:693-700.

[13]

GhemişDM, MarcuLG, ViragV, Virag A. Dosimetric characteristics of 6MV flattening filter free and flattened beams among beam-matched linacs: a three-institutional study. Radiat Oncol. 2023;18(1):126.

[14]

BhangleJR, Narayanan VK, KumarNK, VaitheeswaranR. Dosimetric analysis of beam-matching procedure of two similar linear accelerators. JMed Phys. 2011;36(3):176-180.

[15]

KrishnappanC, RadhaCA, BalajiK, et al. Evaluation of beammatching accuracy among six linacs from the same vendor. Radiol Phys Technol. 2018;11(4):423-433.

[16]

Rojas-LópezJA, Venencia D. Importance of Beam-Matching between TrueBeam STx and Novalis Tx in Pre-Treatment Quality Assurance Using Portal Dosimetry. JMed Phys. 2021;46(3):211-220.

[17]

XuZ, Warrell G, LeeS, et al. Assessment of beam-matched linacs quality/accuracy for interchanging SBRT or SRT patient using VMAT without replanning. J Appl Clin Med Phys. 2019;20(1):68-75.

[18]

GhazalM, Södergren L, WestermarkM, SöderströmJ, Pommer T. Dosimetric and mechanical equivalency of Varian TrueBeam linear accelerators. J Appl Clin Med Phys. 2020;21(12):43-53.

[19]

TreutweinM, Härtl P, GrögerC, KatsilieriZ, DoblerB. Linac twins in radiotherapy. Evolution of Ionizing Radiation Research. Rijeka: InTech. 2015;171-186.

[20]

KangS, ChungJ, EomK, et al. Possibility of Interchanging Patients for Beam-Matched Linear Accelerators from the Same Vendor. J Korean Phys Soc. 2019;75:628-635.

[21]

DasIJ, ChengCW, WattsRJ, et al. Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9):4186-4215.

[22]

AlmondPR, BiggsPJ, CourseyBM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870.

[23]

McEwenM, DeWerdL, IbbottG, et al. Addendum to the AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon beams. Med Phys. 2014;41(4):041501.

[24]

GeurtsMW, Jacqmin DJ, JonesLE, et al. AAPM MEDICAL PHYSICS PRACTICE GUIDELINE 5.b: Commissioning and QA of treatment planning dose calculations-Megavoltage photon and electron beams. J Appl Clin Med Phys. 2022;23(9):e13641.

[25]

EzzellGA, Burmeister JW, DoganN, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359-5373.

[26]

KleinEE, HanleyJ, BayouthJ, et al. Task Group 142 report: quality assurance ofmedical accelerators. Med Phys. 2009;36(9):4197-4212.

[27]

HanleyJ, Dresser S, SimonW, et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys. 2021;48(10):e830-e885.

[28]

MiftenM, OlchA, MihailidisD, et al. Tolerance limits and methodologies for IMRTmeasurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83.

[29]

BiggsS, Jennings M, SwerdloffS, et al. PyMedPhys: Acommunity effort to develop an open, Python-based standard library formedical physics applications. Journal of Open Source Software 7. 2022;4555.

[30]

SunX, GuanF, YunQ, et al. Impact of setup errors on the robustness of linac-based single-isocenter coplanar and non-coplanar VMAT plans for multiple brain metastases. J Appl Clin Med Phys. 2024;25(7):e14317.

[31]

KraanAC, Moglioni M, BattistoniG, et al. Using the gamma-index analysis for inter-fractional comparison of in-beam PET images for head-and-neck treatment monitoring in proton therapy: A Monte Carlo simulation study. Phys Med. 2024;120:103329.

[32]

YangM, WangX, GuanF, et al. Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments. Phys Med Biol. 2022;67(16):

[33]

BogowiczM, Lustermans D, TaastiVT, et al. Evaluation of a cone-beam computed tomography system calibrated for accurate radiotherapy dose calculation. Phys Imaging Radiat Oncol. 2024;29:100566.

[34]

HirashimaH, Nakamura M, NakamuraK, MatsuoY, Mizowaki T. Dosimetric verification of four dose calculation algorithms for spine stereotactic body radiotherapy. J Radiat Res. 2024;65(1):109-118.

[35]

ManiscalcoA, MathewE, ParsonsD, et al. Multimodal radiotherapy dose prediction using a multi-task deep learning model. Med Phys. 2024;51(6):3932-3949.

RIGHTS & PERMISSIONS

2024 The Author(s). Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended
[36]

KraanAC, SusiniF, MoglioniM, et al. In-beam PET treatment monitoring of carbon therapy patients: Results of a clinical trial at CNAO. Phys Med. 2024;125:104493.

AI思维导图

/