Mimicking large spot-scanning radiation fields for proton FLASH preclinical studieswith a roboticmotion platform

Fada Guan , Dadi Jiang , Xiaochun Wang , Ming Yang , Kiminori Iga , Yuting Li , Lawrence Bronk , Julianna Bronk , Liang Wang , Youming Guo , Narayan Sahoo , David R. Grosshans , Albert C. Koong , Xiaorong R. Zhu , Radhe Mohan

Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (4) : 168 -181.

PDF
Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (4) : 168 -181. DOI: 10.1002/pro6.1243
ORIGINAL ARTICLE

Mimicking large spot-scanning radiation fields for proton FLASH preclinical studieswith a roboticmotion platform

Author information +
History +
PDF

Abstract

Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiatingmice (1-cm2 square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95% with the criteria of 2%/1 mm/2% dose threshold). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.

Keywords

proton therapy / ultra-high dose rate FLASH / roboticmotion technique

Cite this article

Download citation ▾
Fada Guan,Dadi Jiang,Xiaochun Wang,Ming Yang,Kiminori Iga,Yuting Li,Lawrence Bronk,Julianna Bronk,Liang Wang,Youming Guo,Narayan Sahoo,David R. Grosshans,Albert C. Koong,Xiaorong R. Zhu,Radhe Mohan. Mimicking large spot-scanning radiation fields for proton FLASH preclinical studieswith a roboticmotion platform. Precision Radiation Oncology, 2024, 8(4): 168-181 DOI:10.1002/pro6.1243

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FavaudonV, Caplier L, MonceauV, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93.

[2]

Montay-GruelP, Acharya MM, PeterssonK, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 2020;117(41):25946-25947.

[3]

VozeninMC, HendryJH, LimoliCL. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin Oncol (R Coll Radiol). 2019;31(7):407-415.

[4]

MazalA, Prezado Y, AresC, et al. FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. Br J Radiol. 2020;93(1107):20190807.

[5]

WilsonJD, Hammond EM, HigginsGS, PeterssonK. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front Oncol. 2020;9:1563.

[6]

EsplenN, Mendonca MS, Bazalova-CarterM. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol. 2020;65(23):23TR03.

[7]

LevyK, Natarajan S, WangJ, et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep. 2020;10(1):21600.

[8]

CunninghamS, McCauley S, VairamaniK, et al. FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers (Basel). 2021;13(5):1012.

[9]

AdrianG, Konradsson E, LempartM, BäckS, CebergC, PeterssonK. The FLASH effect depends on oxygen concentration. Br J Radiol. 2020;93(1106):20190702.

[10]

KoongAC, MehtaVK, LeQT, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000;48(4):919-922.

[11]

BourhisJ, SozziWJ, JorgePG, et al. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 2019;139:18-22.

[12]

DuranteM, Bräuer-Krisch E, HillM. Faster and safer? FLASH ultrahigh dose rate in radiotherapy. Br J Radiol. 2018;91(1082):20170628.

[13]

YovinoS, Kleinberg L, GrossmanSA, NarayananM, FordE. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggestsmethods of modifying the impact of radiation on immune cells. Cancer Invest. 2013;31(2):140-144.

[14]

GirdhaniS, AbelE, KatsisA, et al. Abstract LB-280: FLASH: A novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways. Cancer Res. 2019;79:(13):LB-280.

[15]

RamaN, SahaT, ShuklaS, et al. Improved tumor control through Tcell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system. Int J Radiat Oncol Biol Phys. 2019;105(1):S164-S165.

[16]

Rohrer BleyC, WolfF, Gonçalves JorgeP, et al. Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs. Clin Cancer Res. 2022;28(17):3814-3823.

[17]

DaughertyEC, MasciaA, ZhangY, et al. FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases (FAST-01): Protocol for the First Prospective Feasibility Study. JMIR Res Protoc. 2023;12:e41812.

[18]

MasciaAE, Daugherty EC, ZhangY, et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol. 2023;9(1):62-69.

[19]

DaughertyEC, ZhangY, XiaoZ, et al. FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach. Radiat Oncol. 2024;19(1):34.

[20]

TaylorPA, MoranJM, JaffrayDA, Buchsbaum JC. A roadmap to clinical trials for FLASH. Med Phys. 2022;49(6):4099-4108.

[21]

ZouW, ZhangR, SchülerE, et al. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys. 2023;116(5):1202-1217.

[22]

WuY, NoHJ, BreitkreutzDY, et al. Technological basis for clinical trials in FLASH radiation therapy: A review. Appl Rad Oncol. 2021;10:6-14.

[23]

NoHJ, WuYF, DworkinML, et al. Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials. Int J Radiat Oncol Biol Phys. 2023;117(2):482-492.

[24]

BourhisJ, Montay-Gruel P, Gonçalves JorgeP, et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother Oncol. 2019;139:11-17.

[25]

SchülerE, Trovati S, KingG, et al. Experimental Platform forUltra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. Int J Radiat Oncol Biol Phys. 2017;97(1):195-203.

[26]

SchülerE, Acharya M, Montay-GruelP, LooBW Jr, Vozenin MC, MaximPG. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Med Phys. 2022;49(3):2082-2095.

[27]

DiffenderferES, Verginadis II, KimMM, et al. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int J Radiat Oncol Biol Phys. 2020;106(2):440-448.

[28]

BuonannoM, GriljV, BrennerDJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 2019;139:51-55.

[29]

YangM, WangX, GuanF, et al. Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments. Phys Med Biol. 2022;67(16):

[30]

TittU, YangM, WangX, et al. Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Med Phys. 2022;49(1):497-509.

[31]

WangQ, TittU, MohanR, et al. Optimization of FLASH proton beams using a track-repeating algorithm. Med Phys. 2022;49(10):6684-6698.

[32]

AgostinelliS, Allison J, AmakoK, et al. GEANT4—a simulation toolkit. Nucl Instrum Meth A. 2003;506:250–303.

[33]

AllisonJ, AmakoK, ApostolakisJ, et al. Geant4 developments and applications. IEEE T Nucl Sci. 2006;53:270–278.

[34]

GuanF, WangX, YangM, et al. Dosimetric response of Gafchromic™ EBT-XD film to therapeutic protons. Precis Radiat Oncol. 2023;7(1):15-26.

[35]

JaccardM, Durán MT, PeterssonK, et al. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Med Phys. 2018;45(2):863-874.

[36]

BronkJ, BronkL, SinghS, et al. Enhanced radiation-sparing effects of ultra-high dose rate proton radiation (FLASH-RT) in a human induced pluripotent stem cell-derived cerebral organoid model. Int J Radiat Oncol Biol Phys. 2022;114:S66.

[37]

MaD, BronkL, KerrM, et al. Exploring the advantages of intensitymodulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep. 2020;10(1):3199.

[38]

BronkL, GuanF, PatelD, et al. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel). 2020;12(12):3658.

[39]

PatelD, BronkL, GuanF, et al. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017;44(11):6061-6073.

[40]

SchneiderCA, Rasband WS, EliceiriKW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675.

[41]

BiggsS, Jennings M, SwerdloffS, et al. PyMedPhys: Acommunity effort to develop an open, Python-based standard library formedical physics applications. J Open Source Softw. 2022;7:4555.

[42]

PeelerCR, Mirkovic D, TittU, et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121(3):395-401.

[43]

BoscoloD, Krämer M, FussMC, DuranteM, Scifoni E. Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation. Int J Mol Sci. 2020;21(2):424.

RIGHTS & PERMISSIONS

2024 The Author(s). Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

PDF

151

Accesses

0

Citation

Detail

Sections
Recommended
[44]

ShiJ, XuK, KeyvanlooA, et al. A Multimodality Image Guided Precision Radiation Research Platform: Integrating X-ray, Bioluminescence, and Fluorescence Tomography With Radiation Therapy. Int J Radiat Oncol Biol Phys. 2020;108(4):1063-1072.

AI思维导图

/