Mimicking large spot-scanning radiation fields for proton FLASH preclinical studieswith a roboticmotion platform

Fada Guan , Dadi Jiang , Xiaochun Wang , Ming Yang , Kiminori Iga , Yuting Li , Lawrence Bronk , Julianna Bronk , Liang Wang , Youming Guo , Narayan Sahoo , David R. Grosshans , Albert C. Koong , Xiaorong R. Zhu , Radhe Mohan

Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (4) : 168 -181.

PDF
Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (4) : 168 -181. DOI: 10.1002/pro6.1243
ORIGINAL ARTICLE

Mimicking large spot-scanning radiation fields for proton FLASH preclinical studieswith a roboticmotion platform

Author information +
History +
PDF

Abstract

Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiatingmice (1-cm2 square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95% with the criteria of 2%/1 mm/2% dose threshold). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.

Keywords

proton therapy / ultra-high dose rate FLASH / roboticmotion technique

Cite this article

Download citation ▾
Fada Guan, Dadi Jiang, Xiaochun Wang, Ming Yang, Kiminori Iga, Yuting Li, Lawrence Bronk, Julianna Bronk, Liang Wang, Youming Guo, Narayan Sahoo, David R. Grosshans, Albert C. Koong, Xiaorong R. Zhu, Radhe Mohan. Mimicking large spot-scanning radiation fields for proton FLASH preclinical studieswith a roboticmotion platform. Precision Radiation Oncology, 2024, 8(4): 168-181 DOI:10.1002/pro6.1243

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FavaudonV, Caplier L, MonceauV, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93.

[2]

Montay-GruelP, Acharya MM, PeterssonK, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 2020;117(41):25946-25947.

[3]

VozeninMC, HendryJH, LimoliCL. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin Oncol (R Coll Radiol). 2019;31(7):407-415.

[4]

MazalA, Prezado Y, AresC, et al. FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. Br J Radiol. 2020;93(1107):20190807.

[5]

WilsonJD, Hammond EM, HigginsGS, PeterssonK. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front Oncol. 2020;9:1563.

[6]

EsplenN, Mendonca MS, Bazalova-CarterM. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol. 2020;65(23):23TR03.

[7]

LevyK, Natarajan S, WangJ, et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep. 2020;10(1):21600.

[8]

CunninghamS, McCauley S, VairamaniK, et al. FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers (Basel). 2021;13(5):1012.

[9]

AdrianG, Konradsson E, LempartM, BäckS, CebergC, PeterssonK. The FLASH effect depends on oxygen concentration. Br J Radiol. 2020;93(1106):20190702.

[10]

KoongAC, MehtaVK, LeQT, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000;48(4):919-922.

[11]

BourhisJ, SozziWJ, JorgePG, et al. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 2019;139:18-22.

[12]

DuranteM, Bräuer-Krisch E, HillM. Faster and safer? FLASH ultrahigh dose rate in radiotherapy. Br J Radiol. 2018;91(1082):20170628.

[13]

YovinoS, Kleinberg L, GrossmanSA, NarayananM, FordE. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggestsmethods of modifying the impact of radiation on immune cells. Cancer Invest. 2013;31(2):140-144.

[14]

GirdhaniS, AbelE, KatsisA, et al. Abstract LB-280: FLASH: A novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways. Cancer Res. 2019;79:(13):LB-280.

[15]

RamaN, SahaT, ShuklaS, et al. Improved tumor control through Tcell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system. Int J Radiat Oncol Biol Phys. 2019;105(1):S164-S165.

[16]

Rohrer BleyC, WolfF, Gonçalves JorgeP, et al. Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs. Clin Cancer Res. 2022;28(17):3814-3823.

[17]

DaughertyEC, MasciaA, ZhangY, et al. FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases (FAST-01): Protocol for the First Prospective Feasibility Study. JMIR Res Protoc. 2023;12:e41812.

[18]

MasciaAE, Daugherty EC, ZhangY, et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol. 2023;9(1):62-69.

[19]

DaughertyEC, ZhangY, XiaoZ, et al. FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach. Radiat Oncol. 2024;19(1):34.

[20]

TaylorPA, MoranJM, JaffrayDA, Buchsbaum JC. A roadmap to clinical trials for FLASH. Med Phys. 2022;49(6):4099-4108.

[21]

ZouW, ZhangR, SchülerE, et al. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys. 2023;116(5):1202-1217.

[22]

WuY, NoHJ, BreitkreutzDY, et al. Technological basis for clinical trials in FLASH radiation therapy: A review. Appl Rad Oncol. 2021;10:6-14.

[23]

NoHJ, WuYF, DworkinML, et al. Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials. Int J Radiat Oncol Biol Phys. 2023;117(2):482-492.

[24]

BourhisJ, Montay-Gruel P, Gonçalves JorgeP, et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother Oncol. 2019;139:11-17.

[25]

SchülerE, Trovati S, KingG, et al. Experimental Platform forUltra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. Int J Radiat Oncol Biol Phys. 2017;97(1):195-203.

[26]

SchülerE, Acharya M, Montay-GruelP, LooBW Jr, Vozenin MC, MaximPG. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Med Phys. 2022;49(3):2082-2095.

[27]

DiffenderferES, Verginadis II, KimMM, et al. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int J Radiat Oncol Biol Phys. 2020;106(2):440-448.

[28]

BuonannoM, GriljV, BrennerDJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 2019;139:51-55.

[29]

YangM, WangX, GuanF, et al. Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments. Phys Med Biol. 2022;67(16):

[30]

TittU, YangM, WangX, et al. Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Med Phys. 2022;49(1):497-509.

[31]

WangQ, TittU, MohanR, et al. Optimization of FLASH proton beams using a track-repeating algorithm. Med Phys. 2022;49(10):6684-6698.

[32]

AgostinelliS, Allison J, AmakoK, et al. GEANT4—a simulation toolkit. Nucl Instrum Meth A. 2003;506:250–303.

[33]

AllisonJ, AmakoK, ApostolakisJ, et al. Geant4 developments and applications. IEEE T Nucl Sci. 2006;53:270–278.

[34]

GuanF, WangX, YangM, et al. Dosimetric response of Gafchromic™ EBT-XD film to therapeutic protons. Precis Radiat Oncol. 2023;7(1):15-26.

[35]

JaccardM, Durán MT, PeterssonK, et al. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Med Phys. 2018;45(2):863-874.

[36]

BronkJ, BronkL, SinghS, et al. Enhanced radiation-sparing effects of ultra-high dose rate proton radiation (FLASH-RT) in a human induced pluripotent stem cell-derived cerebral organoid model. Int J Radiat Oncol Biol Phys. 2022;114:S66.

[37]

MaD, BronkL, KerrM, et al. Exploring the advantages of intensitymodulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep. 2020;10(1):3199.

[38]

BronkL, GuanF, PatelD, et al. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel). 2020;12(12):3658.

[39]

PatelD, BronkL, GuanF, et al. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017;44(11):6061-6073.

[40]

SchneiderCA, Rasband WS, EliceiriKW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675.

[41]

BiggsS, Jennings M, SwerdloffS, et al. PyMedPhys: Acommunity effort to develop an open, Python-based standard library formedical physics applications. J Open Source Softw. 2022;7:4555.

[42]

PeelerCR, Mirkovic D, TittU, et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121(3):395-401.

[43]

BoscoloD, Krämer M, FussMC, DuranteM, Scifoni E. Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation. Int J Mol Sci. 2020;21(2):424.

[44]

ShiJ, XuK, KeyvanlooA, et al. A Multimodality Image Guided Precision Radiation Research Platform: Integrating X-ray, Bioluminescence, and Fluorescence Tomography With Radiation Therapy. Int J Radiat Oncol Biol Phys. 2020;108(4):1063-1072.

RIGHTS & PERMISSIONS

2024 The Author(s). Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/