Research progress of cardiotoxicity caused by radiotherapy in breast cancer

Xiaofei Xu , Yuesong Yin , Lixia Zhang , Dongmiao Wang , Ye Zhou , Qingxia Li

Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (3) : 153 -158.

PDF
Precision Radiation Oncology ›› 2024, Vol. 8 ›› Issue (3) : 153 -158. DOI: 10.1002/pro6.1241
REVIEW

Research progress of cardiotoxicity caused by radiotherapy in breast cancer

Author information +
History +
PDF

Abstract

Breast cancer has surpassed lung cancer as the most common type of malignancy worldwide. Treatments for breast cancer include surgery, chemotherapy, radiotherapy, targeted therapy, endocrine therapy, immunotherapy, and hyperthermia. Radiotherapy plays an important role in breast cancer treatment. Patients with early breast cancer can have longer survival after combined treatment, but cardiotoxicity caused by radiotherapymay affect long-term prognosis. This article reviews cardiac damage caused by radiotherapy in breast cancer.

Keywords

Breast cancer / Cardiotoxicity / Radiotherapy

Cite this article

Download citation ▾
Xiaofei Xu, Yuesong Yin, Lixia Zhang, Dongmiao Wang, Ye Zhou, Qingxia Li. Research progress of cardiotoxicity caused by radiotherapy in breast cancer. Precision Radiation Oncology, 2024, 8(3): 153-158 DOI:10.1002/pro6.1241

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SiegelRL, MillerKD, WagleNS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023;73(1):17-48.

[2]

TaylorC, CorreaC, DuaneFK, et al. Estimating the Risks of Breast Cancer Radiotherapy: Evidence From Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials. J Clin Oncol. 2017;35(15):1641-1649.

[3]

DarbySC, EwertzM, McGaleP, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998.

[4]

GaaschA, Schönecker S, SimonettoC, et al. Heart sparing radiotherapy in breast cancer: the importance of baseline cardiac risks. Radiat Oncol. 2020;15(1):117.

[5]

TalebA, AhmadKA, IhsanAU, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother. 2018;102:689-698.

[6]

BirbenE, Sahiner UM, SackesenC, ErzurumS, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19.

[7]

FarhoodB, Ashrafizadeh M, KhodamoradiE, et al. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci. 2020;250:117570.

[8]

VonaR, Gambardella L, CittadiniC, StrafaceE, Pietraforte D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid Med Cell Longev. 2019;2019:8267234.

[9]

PingZ, PengY, LangH, et al. Oxidative Stress in Radiation-Induced Cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143.

[10]

HigginsDP, Hemsley S, CanfieldPJ. Association of uterine and salpingeal fibrosis with chlamydial hsp60 and hsp10 antigen-specific antibodies in Chlamydia-infected koalas. Clin Diagn Lab Immunol. 2005;12(5):632-639.

[11]

TapioS. Pathology and biology of radiation-induced cardiac disease. J Radiat Res. 2016;57(5):439-448.

[12]

BoermaM, WangJ, WondergemJ, et al. Influence of mast cells on structural and functional manifestations of radiation-induced heart disease. Cancer Res. 2005;65(8):3100-3107.

[13]

FrangogiannisN. Transforming growth factor-βin tissue fibrosis. J Exp Med. 2020;217(3):e20190103.

[14]

WynnTA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210.

[15]

YeY, YahuaZ, ConghuaX. Advances in the pathogenesis ofmyocardial fibrosis after radiation cardiac injury. Chin J Radiat Oncol. 2017;5:598-602.

[16]

SridharanV, SharmaSK, MorosEG, et al. Effects of radiation on the epidermal growth factor receptor pathway in the heart. Int J Radiat Biol. 2013;89(7):539-547.

[17]

TrivediS J, TangS, BythK, et al. Segmental Cardiac Radiation Dose Determines Magnitude of Regional Cardiac Dysfunction. J Am Heart Assoc. 2021;10(7):e19476.

[18]

SkyttäT, Tuohinen S, BomanE, VirtanenV, Raatikainen P, Kellokumpu-LehtinenPL. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat Oncol. 2015;10:141.

[19]

NiederC, SchillS, KneschaurekP, MollsM. Influence of different treatment techniques on radiation dose to the LAD coronary artery. Radiat Oncol. 2007;2:20.

[20]

van den BogaardVA, Ta BD, van der SchaafA, et al. Validation and Modification of a Prediction Model for Acute Cardiac Events in Patients With Breast Cancer Treated With Radiotherapy Based on Three-DimensionalDoseDistributions to Cardiac Substructures. J Clin Oncol. 2017, 35(11):1171-1178.

[21]

GkantaifiA, Papadopoulos C, SpyropoulouD, et al. Evaluation of the Irradiated Volume of the Heart and Cardiac Substructures After Left Breast Radiotherapy. Anticancer Res. 2020;40(5):3003-3009.

[22]

ShanshanJ. Dosimetric study of cardiac substructure in patients with left breast cancer treated with postoperative radiotherapy. North China University of Science and Technology; 2022.

[23]

Becker-SchiebeM, Stockhammer M, HoffmannW, WetzelF, FranzH. Does mean heart dose sufficiently reflect coronary artery exposure in left-sided breast cancer radiotherapy? Influence of respiratory gating. Strahlenther Onkol. 2016;192(9):624-631.

[24]

KnöchelmannA C, Ceylan N, BremerM. Left-sided Breast Cancer Irradiation With Deep Inspiration Breath-hold: Changes in Heart and Lung Dose in Two Periods. In Vivo. 2022;36(1):314-324.

[25]

MulliezT, Veldeman L, SpeleersB, et al. Heart dose reduction by prone deep inspiration breath hold in left-sided breast irradiation. Radiother Oncol. 2015;114(1):79-84.

[26]

VerhoevenK, Sweldens C, PetillionS, et al. Breathing adapted radiation therapy in comparison with prone position to reduce the doses to the heart, left anterior descending coronary artery, and contralateral breast in whole breast radiation therapy. Pract Radiat Oncol. 2014;4(2):123-129.

[27]

BartlettFR, ColganRM, CarrK, et al. The UK HeartSpare Study: randomised evaluation of voluntary deep-inspiratory breathhold in women undergoing breast radiotherapy. Radiother Oncol. 2013;108(2):242-247.

[28]

KimDW, HongCS, SonJ, et al. Dosimetric analysis of six wholebreast irradiation techniques in supine and prone positions. Sci Rep. 2024;14(1):14347.

[29]

HongZ, YangZ, MeiX, et al. A retrospective study of adjuvant proton radiotherapy for breast cancer after lumpectomy: a comparison of conventional-dose and hypofractionated dose. Radiat Oncol. 2023;18(1):56.

[30]

KammererE, Guevelou J L, ChaikhA, et al. Proton therapy for locally advanced breast cancer: A systematic review of the literature. Cancer Treat Rev. 2018;63:19-27.

[31]

LyonAR, López-Fernández T, CouchLS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229-4361.

[32]

SkyttäT, Tuohinen S, LuukkaalaT, et al. Adjuvant radiotherapyinduced cardiac changes among patients with early breast cancer: a three-year follow-up study. Acta Oncol. 2019;58(9):1250-1258.

[33]

PortaluriM, Petruzzelli MF, TramacereF, AndreassiMG. B-type natriuretic peptide plasma level in 5-year breast cancer survivors after radiotherapy. Int J Radiat Biol. 2019;95(2):201-206.

[34]

TlegenovaZ, Balmagambetova S, ZholdinB, et al. Role of Clinical Risk Factors and B-Type Natriuretic Peptide in Assessing the Risk of Asymptomatic Cardiotoxicity inBreastCancer Patients inKazakhstan. Diagnostics (Basel). 2023;13(23):3557.

[35]

ErvenK, Florian A, SlagmolenP, et al. Subclinical cardiotoxicity detected by strain rate imaging up to 14 months after breast radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(5):1172-1178.

[36]

D’ErricoMP, Grimaldi L, PetruzzelliMF, et al. N-terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):e239-e246.

[37]

AulaH, Skyttä T, TuohinenS, et al. Decreases in TGF-β1 and PDGF levels are associated with echocardiographic changes during adjuvant radiotherapy for breast cancer. Radiat Oncol. 2018;13(1):201.

[38]

FinkelmanBS, PuttM, WangT, et al. Arginine-Nitric Oxide Metabolites andCardiac Dysfunction in Patients With Breast Cancer. J AmColl Cardiol. 2017;70(2):152-162.

[39]

DemisseiBG, Freedman G, FeigenbergSJ, et al. Early Changes in Cardiovascular Biomarkers with Contemporary Thoracic Radiation Therapy for Breast Cancer, Lung Cancer, and Lymphoma. Int J Radiat Oncol Biol Phys. 2019;103(4):851-860.

[40]

TeimouriK, Khoshgard K, FarshchianN, RouzbahaniM, Azimivaghar J. Investigation of electrocardiography and echocardiography changes after adjuvant radiation therapy of left-sided breast cancer. J Med Imaging Radiat Sci. 2023;54(3):495-502.

[41]

TuohinenSS, Keski-Pukkila K, SkyttäT, et al. Radiotherapy-induced Early ECG Changes and Their Comparison with Echocardiography in Patients with Early-stage Breast Cancer. Anticancer Res. 2018;38(4):2207-2215.

[42]

ErvenK, Florian A, SlagmolenP, et al. Subclinical cardiotoxicity detected by strain rate imaging up to 14 months after breast radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(5):1172-1178.

[43]

FouratiN, Charfeddine S, ChaffaiI, et al. Subclinical left ventricle impairment following breast cancer radiotherapy: Is there an association between segmental doses and segmental strain dysfunction? Int J Cardiol. 2021;345:130-136.

[44]

WalkerV, LairezO, FondardO, et al. Early detection of subclinical left ventricular dysfunction after breast cancer radiation therapy using speckle-tracking echocardiography: association between cardiac exposure and longitudinal strain reduction (BACCARAT study). Radiat Oncol. 2019;14(1):204.

[45]

TrivediSJ, Choudhary P, LoQ, et al. Persistent reduction in global longitudinal strain in the longer term after radiation therapy in patients with breast cancer. Radiother Oncol. 2019;132:148-154.

[46]

XuX, WangD, YinY, et al. Role of global longitudinal strain in evaluating radiotherapy–induced early cardiotoxicity in breast cancer: A meta-analysis. Kardiol Pol. 2023;81(1):58-60.

[47]

Sritharan HP, Delaney G P, LoQ, et al. Evaluation of traditional and novel echocardiographic methods of cardiac diastolic dysfunction post radiotherapy in breast cancer. Int J Cardiol. 2017;243:204-208.

[48]

UganderM, Bagi PS, OkiA J, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5(6):596-603.

[49]

GiriS, Chung Y C, MerchantA, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009;11(1):56.

[50]

TanTC, Scherrer-Crosbie M. Cardiac complications of chemotherapy: role of imaging. Curr Treat Options Cardiovasc Med. 2014;16(4):296.

[51]

TahirE, AzarM, ShihadaS, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicinbased chemotherapy or left-sided RT. Eur Radiol. 2022;32(3):1853-1865.

[52]

MoisanderM, Skyttä T, KivistöS, et al. Radiotherapy-induced diffuse myocardial fibrosis in early-stage breast cancer patients -multimodality imaging study with six-year follow-up. Radiat Oncol. 2023;18(1):124.

[53]

DarbySC, EwertzM, McGaleP, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998.

[54]

SeddonB, CookA, GothardL, et al. Detection of defects in myocardial perfusion imaging in patients with early breast cancer treatedwith radiotherapy. Radiother Oncol. 2002;64(1):53-63.

RIGHTS & PERMISSIONS

2024 The Author(s). Precision Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Shandong Cancer Hospital & Institute.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/