Searching for an Optimized Potassium Fertilization in Grapevine (Vitis vinifera L.) cv. Tempranillo with an Emphasis on Berry Quality and Nutrient Composition

Carolina Salazar-Parra , Fermín Morales

Physiology and Management of Sustainable Crops ›› 2025, Vol. 1 ›› Issue (1) : 7

PDF (29231KB)
Physiology and Management of Sustainable Crops ›› 2025, Vol. 1 ›› Issue (1) :7 DOI: 10.53941/pmsc.2025.100007
Article
research-article

Searching for an Optimized Potassium Fertilization in Grapevine (Vitis vinifera L.) cv. Tempranillo with an Emphasis on Berry Quality and Nutrient Composition

Author information +
History +
PDF (29231KB)

Abstract

Potassium (K) is an essential macronutrient that plays a central role in grapevine physiology and fruit quality. This study aimed to evaluate the effects of different K concentrations in the nutrient solution on berry composition, color development, and mineral concentration in leaves, petioles, and berries of fruit-bearing cuttings of Vitis vinifera L. cv. Tempranillo. Fruit-bearing cuttings were grown under controlled greenhouse conditions and irrigated with modified half-strength Hoagland solutions containing 0%, 25%, 50%, 75%, or 100% K and a control nutrient solution. Berry quality parameters, including total soluble solids, acidity, anthocyanins, and phenolic maturity, were significantly influenced by K availability. Moderate K treatments (50-75%) produced the most favorable outcomes in terms of sugar accumulation, anthocyanin concentration, and nutrient balance. The results suggest that optimized K fertilization is critical for improving grape quality while avoiding potential negative effects associated with deficiency or excess. These findings provide valuable insights for K management in viticulture.

Keywords

potassium nutrition / grapevine physiology / berry quality / Vitis vinifera / macronutrients / micronutrients

Cite this article

Download citation ▾
Carolina Salazar-Parra, Fermín Morales. Searching for an Optimized Potassium Fertilization in Grapevine (Vitis vinifera L.) cv. Tempranillo with an Emphasis on Berry Quality and Nutrient Composition. Physiology and Management of Sustainable Crops, 2025, 1(1): 7 DOI:10.53941/pmsc.2025.100007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Intrigliolo D.S.; Castel J.R. Response of Vitis vinifera cv. ‘Tempranillo’ to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality. Agric. Water Manag. 2009, 96, 282-292.

[2]

Peuke A.D. Nutrient composition of leaves and fruit juice of grapevine as affected by soil and nitrogen fertilization. J. Plant Nutr. Soil Sci. 2009, 172, 557-564.

[3]

Marschner H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 1995.

[4]

Bavaresco, L.; Gatti M.; Fregoni M. Eds.; Nutritional deficiencies. In Methodologies and Results in Grapevine Research; Delrot, S., Medrano, H., Or, E.; et al., Springer: Berlin, Germany, 2010; pp. 165-191.

[5]

White P.J.; Brown P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073-1080. https://doi.org/10.1093/aob/mcq085.

[6]

Brunetto G.; da Silva J.A.B.; Ceretta C.A.; et al. Grapevine mineral nutrition: Physiological basis and diagnosis. Acta Physiol. Plant. 2003, 25, 489-500. https://doi.org/10.1023/A:1024832113098.

[7]

Schreiner R.P. Nutrient uptake and distribution in young Pinot noir grapevines over two seasons. Am. J. Enol. Vitic. 2016, 67, 436-448. https://doi.org/10.5344/ajev.2016.15099.

[8]

Pate J.S. Transport and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 1980, 31, 313-340.

[9]

Lang A.; Düring H. Partitioning control by water potential gradient—Evidence for compartmentation breakdown in grape berries. J. Exp. Bot. 1991, 42, 1117-1122.

[10]

Delgado R.; Martín P.; Del Álamo M.; et al. Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilization rates. J. Sci. Food Agric. 2004, 84, 623-630.

[11]

Buvaneshwari S.; Riotte J.; Sekhar M.; et al. Potash fertilizer promotes incipient salinization in groundwater-irrigated semi-arid agriculture. Sci. Rep. 2020, 10, 3691. https://doi.org/10.1038/s41598-020-60365-z.

[12]

Mpelasoka B.S.; Schachtman D.R.; Treeby M.T.; et al. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154-168.

[13]

Zhenming N.; Xuefeng X.; Yi W.; et al. Effects of leaf-applied potassium, gibberellin and source-sink ratio on potassium absorption and distribution in grape fruits. Sci. Hortic. 2008, 115, 164-167.

[14]

Villette J.; Cuéllar T.; Verdeil J.L.; et al. Grapevine potassium nutrition and fruit quality in the context of climate change. Front. Plant Sci. 2020, 11, 123. https://doi.org/10.3389/fpls.2020.00123/full.

[15]

Sperling O.; Perry A.; Ben-Gal A.; et al. Potassium deficiency reduces grapevine transpiration through decreased leaf area and stomatal conductance. Plant Physiol. Biochem. 2024, 208, 108534. https://doi.org/10.1016/j.plaphy.2024.108534.

[16]

Mohammed S.; Singh D.; Ahlawat V.P. Growth, yield and quality of grapes as affected by pruning and basal application of potassium. Haryana J. Hortic. Sci. 1993, 22, 179-182

[17]

Rogiers S.Y.; Coetzee Z.A.; Walker R.R.; et al. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant Sci. 2017, 8, 1629. https://doi.org/10.3389/fpls.2017.01629.

[18]

Pirie A.; Mullins M.G. Interrelationships of sugars, anthocyanins, total phenols and dry weight in skin of grape berries during ripening. Am. J. Enol. Vitic. 1977, 28, 204-209.

[19]

Morris J.R.; Sims C.A.; Cawthon D.L. Effects of excessive potassium levels on pH, acidity and color of fresh and stored grape juice. Am. J. Enol. Vitic. 1983, 34, 35-39.

[20]

Mullins M.G. Test-plant for investigations of the physiology of fruiting in Vitis vinifera L. Nature 1966, 209, 419-420.

[21]

Ollat N.; Génny L. Les boutures fructifères de vigne: Validation d’un modèle d’étude du développement de la physiologie de la vigne. I. Caractéristiques de l’appareil végétatif. J. Int. Des Sci. De La Vigne Et Du Vin 1998, 32, 1-9.

[22]

Santa María E. Incidencia de Botrytis Cinerea en Relación con Diferentes Aspectos Fisiológicos de la vid. Ph.D. Thesis, Universidad de Navarra, Navarra, Spain, 2004.

[23]

Morales F.; Antolín M.C.; Aranjuelo I.; et al. From vineyards to controlled environments in grapevine research: Investigating responses to climate change scenarios using fruit-bearing cuttings. Theor. Exp. Plant Physiol. 2016, 28, 171-191.

[24]

Hoagland D.R.; Arnon D.I. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1-32.

[25]

Glories Y.; Augustin M. Maturité phénolique du raisin, conséquences technologiques: Applications aux millésimes 1991 et 1992. In Journée technique du CIVB; Actes du Colloque : Bordeaux, France, 1993; p. 56.

[26]

AOAC.Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Helrich, K., Ed.; AOAC: Washington, DC, USA, 1990.

[27]

Abadía J.; Nishio J.N.; Terry N. Mineral composition of peach leaves affected by iron chlorosis. J. Plant Nutr. 1985, 8, 697-707.

[28]

Abadía A.; Sanz M.; Montañés L. Photosynthetic pigments and mineral composition of iron-deficient pear leaves. J. Plant Nutr. 1989, 12, 827-838.

[29]

Davies C.; Shin R.; Liu W.; et al. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J. Exp. Bot. 2006, 57, 3209-3216.

[30]

Amiri M.E.; Fallahi E. Influence of mineral nutrients on growth, yield, berry quality, and petiole mineral nutrient concentrations of table grape. J. Plant Nutr. 2007, 30, 463-470.

[31]

Lang A. Turgor-regulated translocation. Plant Cell Environ. 1983, 6, 683-689.

[32]

Boulton R. The general relationship between potassium, sodium and pH in grape juice and wine. Am. J. Enol. Vitic. 1980, 31, 182-186.

[33]

Cui W.; Wang X.; Han S.; et al. Research progress of tartaric acid stabilization on wine characteristics. Food Chem. X. 2024, 23, 101728. https://doi.org/10.1016/j.fochx.2024.101728.

[34]

Somers T.C. Pigment development during ripening of the grape. Vitis 1976, 14, 269-277.

[35]

Wolf T.K.; Haeseler C.W.; Bergman E.L. Growth and foliar elemental composition of Seyval Blanc grapevines as affected by four nutrient solution concentrations of nitrogen, potassium and magnesium. Am. J. Enol. Vitic. 1983, 34, 271-277.

[36]

Garcia M.; Daverede C.; Gallego P.; et al. Effect of various potassium-calcium ratios on cation nutrition of grape grown hydroponically. J. Plant Nutr. 1999, 22, 417-425.

[37]

Poni S.; Quartieri M.; Tagliavini M. Potassium nutrition of Cabernet Sauvignon grapevines (Vitis vinifera L.) as affected by shoot trimming. Plant Soil 2003, 253, 341-351.

[38]

Marschner H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012.

[39]

Morris J.R.; Cawthon D.L. Effect of irrigation, fruit load, and potassium fertilization on yield, quality, and petiole analysis of Concord (Vitis labrusca L.) grapes. Am. J. Enol. Vitic. 1982, 33, 145-148.

[40]

Keller M. The Science of Grapevines:Anatomy and Physiology, 2nd ed.; Academic Press:Cambridge, MA, USA, 2015.

[41]

Gautier P. Diagnostic foliaire de la vigne. Études par analyses factorielles en composantes principales sur plusieurs années. In Proceedings of the 5th International Colloquium Plant Nutrition Control, Casteltranco Veneto, Italy, 1980; pp. 587-590.

[42]

Fregoni M. Exigences d’éléments nutritifs en viticulture. Bull. l’OIV 1985, 650-651.

[43]

Maguire M.E.; Cowan J.A. Magnesium chemistry and biochemistry. BioMetals 2002, 15, 203-210. https://doi.org/10.1023/A:1016058229972.

[44]

Xie K.; Cakmak I.; Wang S.; et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249-256. https://doi.org/10.1016/j.cj.2020.10.005.

[45]

Bell S.J.; Henschke P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242-295.

[46]

Bertamini M.; Nedunchezhian N. Grapevine growth and physiological responses to iron deficiency. J. Plant Nutr. 2005, 28, 737-749.

[47]

Morris J.R.; Cawthon D.L.; Fleming J.W. Effects of high rates of potassium fertilization on raw product quality and changes in pH and acidity during storage of Concord grape juice. Am. J. Enol. Vitic. 1980, 31, 323-328.

[48]

Alloway B. Zinc in Soils and Crop Nutrition. International Zinc Association: Brussels, Belgium; International Fertilizer Industry Association: Paris, France, 2008. Pp. 1-139.

[49]

Tränkner M.; Tavakol E.; Jákli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414-431. https://doi.org/10.1111/ppl.12747.

AI Summary AI Mindmap
PDF (29231KB)

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/