PDF
Abstract
In this paper, we study curved Kakeya sets associated with phase functions satisfying Bourgain’s condition. In particular, we show that the analysis of curved Kakeya sets arising from translation-invariant phase functions under Bourgain’s condition, as well as Nikodym sets on manifolds with constant sectional curvature, can be reduced to the study of standard Kakeya sets in Euclidean space. Combined with the recent breakthrough of Wang and Zahl (arXiv:2502.17655 (2025)), our work establishes the Nikodym conjecture for three-dimensional manifolds with constant sectional curvature. Moreover, we consider (d, k)-Nikodym sets and (s, t)-Furstenberg sets on Riemannian manifolds. For manifolds with constant sectional curvature, we prove that these problems can similarly be reduced to their Euclidean counterparts. As a result, the Furstenberg conjecture on two-dimensional surfaces with constant Gaussian curvature follows from the work of Ren and Wang (arXiv:2308.08819 (2023)).
Keywords
Curved Kakeya sets
/
Nikodym sets
/
Hörmander oscillatory integral operators
/
42B25
/
42B20
Cite this article
Download citation ▾
Chuanwei Gao, Diankun Liu, Yakun Xi.
Curved Kakeya Sets and Nikodym Problems on Manifolds.
Peking Mathematical Journal 1-26 DOI:10.1007/s42543-025-00114-1
| [1] |
Bourgain J. Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal., 1991, 1(2): 147-187
|
| [2] |
Bourgain J. Lp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^p$$\end{document}-estimates for oscillatory integrals in several variables. Geom. Funct. Anal., 1991, 1(4): 321-374
|
| [3] |
Bourgain J. On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal., 1999, 9(2): 256-282
|
| [4] |
Bourgain J, Guth L. Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal., 2011, 21(6): 1239-1295
|
| [5] |
Buschenhenke S, Müller D, Vargas A. Fourier restriction for smooth hyperbolic 2-surfaces. Math. Ann., 2023, 387(1–2): 17-56
|
| [6] |
Chen, M., Gan, S., Guo, S., Hickman, J., Iliopoulou, M., Wright, J.: Oscillatory integral operators and variable schrödinger propagators: beyond the universal estimates. arXiv:2407.06980 (2024)
|
| [7] |
Cordoba A. The Kakeya maximal function and the spherical summation multipliers. Am. J. Math., 1977, 99(1): 1-22
|
| [8] |
Dai, S., Gong, L., Guo, S., Zhang, R.: Oscillatory integral operators on manifolds and related Kakeya and Nikodym problems. Camb. J. Math. 12(4), 937–1015 (2024)
|
| [9] |
Davies RO. Some remarks on the Kakeya problem. Proc. Cambridge Philos. Soc., 1971, 69: 417-421
|
| [10] |
Falconer KJ. Sets with prescribed projections and Nikodým sets. Proc. Lond. Math. Soc. (3), 1986, 53(1): 48-64
|
| [11] |
Gan, S., Wu, S.: On local smoothing estimates for wave equations. arXiv:2502.05973 (2025)
|
| [12] |
Gao C, Li J, Wang L. A type of oscillatory integral operator and its applications. Math. Z., 2022, 302(3): 1551-1584
|
| [13] |
Gao C, Liu B, Miao C, Xi Y. Square function estimates and local smoothing for Fourier integral operators. Proc. Lond. Math. Soc. (3), 2023, 126(6): 1923-1960
|
| [14] |
Guo, S., Oh, C.: A restriction estimate for surfaces with negative Gaussian curvatures. Peking Math. J. 7(1), 155–202 (2024)
|
| [15] |
Guo S, Wang H, Zhang R. A dichotomy for Hörmander-type oscillatory integral operators. Invent. Math., 2024, 238(2): 503-584
|
| [16] |
Hickman J, Rogers KM, Zhang R. Improved bounds for the Kakeya maximal conjecture in higher dimensions. Am. J. Math., 2022, 144(6): 1511-1560
|
| [17] |
Hörmander L. Oscillatory integrals and multipliers on FLp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$FL^p$$\end{document}. Ark. Mat., 1973, 11(1): 1-11
|
| [18] |
Iosevich A, Liu B, Xi Y. Microlocal decoupling inequalities and the distance problem on Riemannian manifolds. Am. J. Math., 2022, 144(6): 1601-1639
|
| [19] |
Katz, N.H., Łaba, I., Tao, T.: An improved bound on the Minkowski dimension of Besicovitch sets in R3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{R}^3$$\end{document}. Ann. Math. (2), 152(2), 383–446 (2000)
|
| [20] |
Katz NH, Tao T. New bounds for Kakeya problems. J. Anal. Math., 2002, 87: 231-263
|
| [21] |
Katz NH, Zahl J. An improved bound on the Hausdorff dimension of Besicovitch sets in R3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{R}^3$$\end{document}. J. Am. Math. Soc., 2019, 32(1): 195-259
|
| [22] |
Katz, N.H., Zahl, J.: A Kakeya maximal function estimate in four dimensions using planebrushes. Rev. Mat. Iberoam. 37(1), 317–359 (2021)
|
| [23] |
Lee, J. M.: Introduction to Riemannian Manifolds, 2nd edn. Graduate Texts in Mathematics, vol. 176. Springer, Cham (2018)
|
| [24] |
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces—Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1999)
|
| [25] |
Mattila, P.: Fourier Analysis and Hausdorff Dimension. Cambridge Studies in Advanced Mathematics, vol. 150. Cambridge University Press, Cambridge (2015)
|
| [26] |
Minicozzi, W.P.II, Sogge, C.D.: Negative results for Nikodym maximal functions and related oscillatory integrals in curved space. Math. Res. Lett. 4(2–3), 221–237 (1997)
|
| [27] |
Mitsis T. On Nikodym-type sets in high dimensions. Studia Math., 2004, 163(2): 189-192
|
| [28] |
Orponen, T., Pyörälä, A., Yi, G.: Furstenberg set theorem for transversal families of functions. arXiv:2508.19047 (2025)
|
| [29] |
Ren, K., Wang, H.: Furstenberg sets estimate in the plane. arXiv:2308.08819 (2023)
|
| [30] |
Schlag W. A geometric inequality with applications to the Kakeya problem in three dimensions. Geom. Funct. Anal., 1998, 8(3): 606-625
|
| [31] |
Sogge CD. Concerning Nikodým-type sets in 3-dimensional curved spaces. J. Am. Math. Soc., 1999, 12(1): 1-31
|
| [32] |
Sogge CD, Xi Y, Xu H. On instability of the Nikodym maximal function bounds over Riemannian manifolds. J. Geom. Anal., 2018, 28(3): 2886-2901
|
| [33] |
Stein, E.M., Oscillatory integrals in Fourier analysis. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, pp. 307–355. Princeton University Press, Princeton, NJ (1986)
|
| [34] |
Tao T. The Bochner–Riesz conjecture implies the restriction conjecture. Duke Math. J., 1999, 96(2): 363-375
|
| [35] |
Wang, H., Wu, S.: Restriction estimates using decoupling theorems and two-ends Furstenberg inequalities. arXiv:2411.08871 (2024)
|
| [36] |
Wang, H., Zahl, J.: Sticky Kakeya sets and the sticky Kakeya conjecture. arXiv:2210.09581 (2022)
|
| [37] |
Wang, H., Zahl, J.: The Assouad dimension of Kakeya sets in R3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{R}^3$$\end{document}. arXiv:2401.12337 (2024)
|
| [38] |
Wang, H., Zahl, J.: Volume estimates for unions of convex sets, and the Kakeya set conjecture in three dimensions. arXiv:2502.17655 (2025)
|
| [39] |
Wisewell L. Kakeya sets of curves. Geom. Funct. Anal., 2005, 15(6): 1319-1362
|
| [40] |
Wolff T. An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoamericana, 1995, 11(3): 651-674
|
| [41] |
Xi Y. On Kakeya–Nikodym type maximal inequalities. Trans. Am. Math. Soc., 2017, 369(9): 6351-6372
|
| [42] |
Zahl, J.: New Kakeya estimates using Gromov’s algebraic lemma. Adv. Math. 380, 107596, 42 pp. (2021)
|
Funding
National Key R&D Program of China(2022YFA1007200)
Natural Science Foundation of China(12301121)
RIGHTS & PERMISSIONS
Peking University