Deformations of G-Valued Pseudocharacters

Julian Quast

Peking Mathematical Journal ›› : 1 -59.

PDF
Peking Mathematical Journal ›› :1 -59. DOI: 10.1007/s42543-025-00113-2
Original Article
research-article

Deformations of G-Valued Pseudocharacters

Author information +
History +
PDF

Abstract

We define a deformation space of Lafforgue’s G-valued pseudocharacters of a profinite group

Γ
for a possibly disconnected reductive group G. We show that this definition generalizes Chenevier’s construction. We show that the universal pseudodeformation ring is noetherian and that the functor of continuous G-pseudocharacters on affinoid
Qp
-algebras is represented by a quasi-Stein rigid analytic space, whenever
Γ
is topologically finitely generated. We also show that the pseudodeformation ring is noetherian when
Γ
satisfies Mazur’s condition
Φp
and G satisfies a certain invariant-theoretic condition. For
G=Sp2n
, we describe three types of obstructed loci in the special fiber of the universal pseudodeformation space of an arbitrary residual pseudocharacter and give upper bounds for their dimension.

Keywords

Pseudorepresentation / Pseudocharacter / Determinant law / Deformation theory / Galois representation / Primary 11F80 / 14J10 / Secondary 20G25 / 11S25 / 14M35

Cite this article

Download citation ▾
Julian Quast. Deformations of G-Valued Pseudocharacters. Peking Mathematical Journal 1-59 DOI:10.1007/s42543-025-00113-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alper J. Adequate moduli spaces and geometrically reductive group schemes. Algebr. Geom., 2014, 1(4): 489-531

[2]

Bate M, Martin B, Röhrle G. A geometric approach to complete reducibility. Invent. Math., 2005, 161(1): 177-218

[3]

Bate M, Martin B, Röhrle G. Semisimplification for subgroups of reductive algebraic groups. Forum Math. Sigma, 2020, 8 e43

[4]

Bate M, Martin B, Röhrle G, Tange R. Complete reducibility and separability. Trans. Am. Math. Soc., 2010, 362(8): 4283-4311

[5]

Berthelot, P.: Cohomologie rigide et cohomologie rigide à supports propres. https://www.wstein.org/people/berthelo/publis/Cohomologie_Rigide_I.pdf (1996)

[6]

Borel A, Tits J. Groupes réductifs. Publ. Math. Inst. Hautes Études Sci., 1965, 27: 55-151

[7]

Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis—A Systematic Approach to Rigid Analytic Geometry. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261. Springer, Berlin (1984)

[8]

Böckle G, Harris M, Khare CB, Thorne JA. G^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\hat{G}}$$\end{document}-local systems on smooth projective curves are potentially automorphic. Acta Math., 2016, 223(1): 1-111

[9]

Böckle G, Iyengar A, Paškūnas V. On local Galois deformation rings. Forum Math. Pi, 2023, 11 e30

[10]

Böckle G, Juschka A-K. Equidimensionality of universal pseudodeformation rings in characteristic p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document} for absolute Galois groups of p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adic fields. Forum Math. Sigma, 2023, 11 e102

[11]

Chenevier, G.: Sur la variété des charactères p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adiques de Gal(Q¯p/Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{\mathbb{Q}}_p/{\mathbb{Q}}_p$$\end{document}). https://gaetan.chenevier.perso.math.cnrs.fr/articles/lieugalois.pdf (2010)

[12]

Chenevier, G.: The p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings. In: Automorphic Forms and Galois Representations, vol. 1, London Mathematical Society Lecture Note Series, vol. 414, pp. 221–285. Cambridge University Press, Cambridge (2014)

[13]

Chenevier G, Gan WT. spin(7)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm spin}(7)$$\end{document} is unacceptable. Peking Math. J., 2025, 8(4): 601-639

[14]

Conrad, B.: Weil and Grothendieck approaches to adelic points. Enseign. Math. (2) 58(1), 61–97 (2012)

[15]

Conrad, B.: Reductive group schemes. In: Autour des Schémas en Groupes, vol. I, Panor. Synthèses, vol. 42/43, pp. 93–444. Société Mathématique de France (SMF), Paris (2014)

[16]

Conrad, B.: Non-split reductive groups over Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\textbf{Z}$$\end{document}. In: Autour des Schémas en Groupes, vol. II, Panor. Synthèses, vol. 46, pp. 193–254. Société Mathématique de France (SMF), Paris (2015)

[17]

Cotner S. Morphisms of character varieties. Int. Math. Res. Not. IMRN, 2024, 2024(16): 11540-11548

[18]

Dat J-F, Helm D, Kurinczuk R, Moss G. Moduli of Langlands parameters. J. Eur. Math. Soc. (JEMS), 2025, 27(5): 1827-1927

[19]

De Concini, C., Procesi, C.: The Invariant Theory of Matrices. University Lecture Series, vol. 69. American Mathematical Society, Providence (2017)

[20]

De Jong AJ. Crystalline Dieudonné module theory via formal and rigid geometry. Publ. Math. Inst. Hautes Études Sci., 1995, 82: 5-96

[21]

Domokos M, Zubkov AN. Semi-invariants of quivers as determinants. Transform. Groups, 2001, 6(1): 9-24

[22]

Donkin S. Invariants of several matrices. Invent. Math., 1992, 110(2): 389-401

[23]

Emerson, K.: Comparison of different definitions of pseudocharacter. https://dataspace.princeton.edu/handle/88435/dsp010c483n151 (2018)

[24]

Emerson, K., Morel, S.: Comparison of different definitions of pseudocharacters. arXiv:2310.03869 (2023)

[25]

Fargues, L., Scholze, P.: Geometrization of the local Langlands correspondence. arXiv:2102.13459 (2021)

[26]

Friedlander, E.M., Mislin, G.: Conjugacy classes of finite solvable subgroups in Lie groups. Ann. Sci. École Norm. Sup. (4) 21(2), 179–191 (1988)

[27]

Grothendieck, A.: Éléments de géométrie algébrique, I. Le langage des schémas. Publ. Math. Inst. Hautes Études Sci. 4, 5–214 (1960)

[28]

Grothendieck, A.: Éléments de géométrie algébrique, IV. Étude locale des schémas et des morphismes de schémas, Troisième partie. Publ. Math. Inst. Hautes Études Sci. 28, 5–255 (1966)

[29]

Hida, H.: Base change and Galois deformation. https://www.math.ucla.edu/~hida/207b.1.14w/Lec14w.pdf (2017)

[30]

Jannsen U. Über Galoisgruppen lokaler Körper. Invent. Math., 1982, 70(1): 53-69

[31]

Jantzen, J.C.: Representations of Algebraic Groups, 2nd edn. Mathematical Surveys and Monographs, vol. 107. Amer. Math. Soc., Providence (2003)

[32]

Lafforgue V. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale. J. Am. Math. Soc., 2018, 31(3): 719-891

[33]

Larsen M. On the conjugacy of element-conjugate homomorphisms. Isr. J. Math., 1994, 88(1–3): 253-277

[34]

Martin BMS. Reductive subgroups of reductive groups in nonzero characteristic. J. Algebra, 2003, 262(2): 265-286

[35]

Mathieu, O.: Filtrations of G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G$$\end{document}-modules. Ann. Sci. École Norm. Sup. (4) 23(4), 625–644 (1990)

[36]

Matsumura, H.: Commutative Algebra, 2nd edn. Mathematics Lecture Note Series, vol. 56. Benjamin, Reading (1980)

[37]

Moakher, M., Quast, J.: Symplectic determinant laws and invariant theory. arXiv:2310.15822 (2023)

[38]

Procesi C. The invariant theory of n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n \times n$$\end{document} matrices. Adv. Math., 1976, 19(3): 306-381

[39]

Razmyslov JuP. Trace identities of full matrix algebras over a field of characteristic zero. Math. USSR Izvestiya, 1974, 8(4): 727-760

[40]

Richardson RW. Conjugacy classes of n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-tuples in Lie algebras and algebraic groups. Duke Math. J., 1988, 57(1): 1-35

[41]

Riehl E. Category Theory in Context, 2016, Mineola, Dover Publications

[42]

Serre J-P. Complète réductibilité. Astérisque, 2005, 299: 195-217

[43]

Seshadri CS. Geometric reductivity over arbitrary base. Adv. Math., 1977, 26(3): 225-274

[44]

SGA3: Schémas en Groupes (SGA 3), Tome III. Structure des Schémas en Groupes Réductifs. Doc. Math. (Paris), vol. 8. Soc. Math. France, Paris (2011)

[45]

Sibirskiĭ, K.S.: Unitary and orthogonal invariants of matrices. Dokl. Akad. Nauk SSSR 172, 40–43 (1967)

[46]

Taylor R. Galois representations associated to Siegel modular forms of low weight. Duke Math. J., 1991, 63(2): 281-332

[47]

The Stacks Project Authors: The Stacks Project. https://stacks.math.columbia.edu (2023)

[48]

Tilouine J. Deformations of Galois Representations and Hecke Algebras, 1996, New Delhi, Narosa Publishing House

[49]

Van der Kallen W. Lectures on Frobenius Splittings and B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B$$\end{document}-Modules, 1993, Berlin, Springer-Verlag

[50]

Wang-Erickson, C.W.: Moduli of Galois representations. Ph.D. Thesis, Harvard University, ProQuest LLC, Ann Arbor (2013)

[51]

Weidner M. Pseudocharacters of homomorphisms into classical groups. Transform. Groups, 2020, 25(4): 1345-1370

[52]

Weiss, A.: On the images of Galois representations attached to low weight Siegel modular forms. J. Lond. Math. Soc. (2) 106(1), 358–387 (2022)

[53]

Wiles A. On ordinary λ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda $$\end{document}-adic representations associated to modular forms. Invent. Math., 1988, 94(3): 529-574

[54]

Zhu, X.: Coherent sheaves on the stack of Langlands parameters. arXiv:2008.02998 (2020)

[55]

Zubkov AN. On the procedure of calculation of the invariants of an adjoint action of classical groups. Commun. Algebra, 1994, 22(11): 4457-4474

[56]

Zubkov AN. Invariants for an adjoint action of classical groups. Algebra Logic, 1999, 38(5): 299-318

Funding

Deutsche Forschungsgemeinschaft(444845124)

RIGHTS & PERMISSIONS

The Author(s)

PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

/