PDF
Abstract
We define a deformation space of Lafforgue’s G-valued pseudocharacters of a profinite group \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Gamma $$\end{document}
for a possibly disconnected reductive group G. We show that this definition generalizes Chenevier’s construction. We show that the universal pseudodeformation ring is noetherian and that the functor of continuous G-pseudocharacters on affinoid \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}_p$$\end{document}
-algebras is represented by a quasi-Stein rigid analytic space, whenever \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Gamma $$\end{document}
is topologically finitely generated. We also show that the pseudodeformation ring is noetherian when \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Gamma $$\end{document}
satisfies Mazur’s condition \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Phi _p$$\end{document}
and G satisfies a certain invariant-theoretic condition. For \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G = \operatorname {Sp}_{2n}$$\end{document}
, we describe three types of obstructed loci in the special fiber of the universal pseudodeformation space of an arbitrary residual pseudocharacter and give upper bounds for their dimension.
Keywords
Pseudorepresentation
/
Pseudocharacter
/
Determinant law
/
Deformation theory
/
Galois representation
/
Primary 11F80
/
14J10
/
Secondary 20G25
/
11S25
/
14M35
Cite this article
Download citation ▾
Julian Quast.
Deformations of G-Valued Pseudocharacters.
Peking Mathematical Journal 1-59 DOI:10.1007/s42543-025-00113-2
| [1] |
Alper J. Adequate moduli spaces and geometrically reductive group schemes. Algebr. Geom., 2014, 1(4): 489-531
|
| [2] |
Bate M, Martin B, Röhrle G. A geometric approach to complete reducibility. Invent. Math., 2005, 161(1): 177-218
|
| [3] |
Bate M, Martin B, Röhrle G. Semisimplification for subgroups of reductive algebraic groups. Forum Math. Sigma, 2020, 8 e43
|
| [4] |
Bate M, Martin B, Röhrle G, Tange R. Complete reducibility and separability. Trans. Am. Math. Soc., 2010, 362(8): 4283-4311
|
| [5] |
Berthelot, P.: Cohomologie rigide et cohomologie rigide à supports propres. https://www.wstein.org/people/berthelo/publis/Cohomologie_Rigide_I.pdf (1996)
|
| [6] |
Borel A, Tits J. Groupes réductifs. Publ. Math. Inst. Hautes Études Sci., 1965, 27: 55-151
|
| [7] |
Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis—A Systematic Approach to Rigid Analytic Geometry. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261. Springer, Berlin (1984)
|
| [8] |
Böckle G, Harris M, Khare CB, Thorne JA. G^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\hat{G}}$$\end{document}-local systems on smooth projective curves are potentially automorphic. Acta Math., 2016, 223(1): 1-111
|
| [9] |
Böckle G, Iyengar A, Paškūnas V. On local Galois deformation rings. Forum Math. Pi, 2023, 11 e30
|
| [10] |
Böckle G, Juschka A-K. Equidimensionality of universal pseudodeformation rings in characteristic p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document} for absolute Galois groups of p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adic fields. Forum Math. Sigma, 2023, 11 e102
|
| [11] |
Chenevier, G.: Sur la variété des charactères p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adiques de Gal(Q¯p/Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{\mathbb{Q}}_p/{\mathbb{Q}}_p$$\end{document}). https://gaetan.chenevier.perso.math.cnrs.fr/articles/lieugalois.pdf (2010)
|
| [12] |
Chenevier, G.: The p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings. In: Automorphic Forms and Galois Representations, vol. 1, London Mathematical Society Lecture Note Series, vol. 414, pp. 221–285. Cambridge University Press, Cambridge (2014)
|
| [13] |
Chenevier G, Gan WT. spin(7)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm spin}(7)$$\end{document} is unacceptable. Peking Math. J., 2025, 8(4): 601-639
|
| [14] |
Conrad, B.: Weil and Grothendieck approaches to adelic points. Enseign. Math. (2) 58(1), 61–97 (2012)
|
| [15] |
Conrad, B.: Reductive group schemes. In: Autour des Schémas en Groupes, vol. I, Panor. Synthèses, vol. 42/43, pp. 93–444. Société Mathématique de France (SMF), Paris (2014)
|
| [16] |
Conrad, B.: Non-split reductive groups over Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\textbf{Z}$$\end{document}. In: Autour des Schémas en Groupes, vol. II, Panor. Synthèses, vol. 46, pp. 193–254. Société Mathématique de France (SMF), Paris (2015)
|
| [17] |
Cotner S. Morphisms of character varieties. Int. Math. Res. Not. IMRN, 2024, 2024(16): 11540-11548
|
| [18] |
Dat J-F, Helm D, Kurinczuk R, Moss G. Moduli of Langlands parameters. J. Eur. Math. Soc. (JEMS), 2025, 27(5): 1827-1927
|
| [19] |
De Concini, C., Procesi, C.: The Invariant Theory of Matrices. University Lecture Series, vol. 69. American Mathematical Society, Providence (2017)
|
| [20] |
De Jong AJ. Crystalline Dieudonné module theory via formal and rigid geometry. Publ. Math. Inst. Hautes Études Sci., 1995, 82: 5-96
|
| [21] |
Domokos M, Zubkov AN. Semi-invariants of quivers as determinants. Transform. Groups, 2001, 6(1): 9-24
|
| [22] |
Donkin S. Invariants of several matrices. Invent. Math., 1992, 110(2): 389-401
|
| [23] |
Emerson, K.: Comparison of different definitions of pseudocharacter. https://dataspace.princeton.edu/handle/88435/dsp010c483n151 (2018)
|
| [24] |
Emerson, K., Morel, S.: Comparison of different definitions of pseudocharacters. arXiv:2310.03869 (2023)
|
| [25] |
Fargues, L., Scholze, P.: Geometrization of the local Langlands correspondence. arXiv:2102.13459 (2021)
|
| [26] |
Friedlander, E.M., Mislin, G.: Conjugacy classes of finite solvable subgroups in Lie groups. Ann. Sci. École Norm. Sup. (4) 21(2), 179–191 (1988)
|
| [27] |
Grothendieck, A.: Éléments de géométrie algébrique, I. Le langage des schémas. Publ. Math. Inst. Hautes Études Sci. 4, 5–214 (1960)
|
| [28] |
Grothendieck, A.: Éléments de géométrie algébrique, IV. Étude locale des schémas et des morphismes de schémas, Troisième partie. Publ. Math. Inst. Hautes Études Sci. 28, 5–255 (1966)
|
| [29] |
Hida, H.: Base change and Galois deformation. https://www.math.ucla.edu/~hida/207b.1.14w/Lec14w.pdf (2017)
|
| [30] |
Jannsen U. Über Galoisgruppen lokaler Körper. Invent. Math., 1982, 70(1): 53-69
|
| [31] |
Jantzen, J.C.: Representations of Algebraic Groups, 2nd edn. Mathematical Surveys and Monographs, vol. 107. Amer. Math. Soc., Providence (2003)
|
| [32] |
Lafforgue V. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale. J. Am. Math. Soc., 2018, 31(3): 719-891
|
| [33] |
Larsen M. On the conjugacy of element-conjugate homomorphisms. Isr. J. Math., 1994, 88(1–3): 253-277
|
| [34] |
Martin BMS. Reductive subgroups of reductive groups in nonzero characteristic. J. Algebra, 2003, 262(2): 265-286
|
| [35] |
Mathieu, O.: Filtrations of G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G$$\end{document}-modules. Ann. Sci. École Norm. Sup. (4) 23(4), 625–644 (1990)
|
| [36] |
Matsumura, H.: Commutative Algebra, 2nd edn. Mathematics Lecture Note Series, vol. 56. Benjamin, Reading (1980)
|
| [37] |
Moakher, M., Quast, J.: Symplectic determinant laws and invariant theory. arXiv:2310.15822 (2023)
|
| [38] |
Procesi C. The invariant theory of n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n \times n$$\end{document} matrices. Adv. Math., 1976, 19(3): 306-381
|
| [39] |
Razmyslov JuP. Trace identities of full matrix algebras over a field of characteristic zero. Math. USSR Izvestiya, 1974, 8(4): 727-760
|
| [40] |
Richardson RW. Conjugacy classes of n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-tuples in Lie algebras and algebraic groups. Duke Math. J., 1988, 57(1): 1-35
|
| [41] |
Riehl E. Category Theory in Context, 2016, Mineola, Dover Publications
|
| [42] |
Serre J-P. Complète réductibilité. Astérisque, 2005, 299: 195-217
|
| [43] |
Seshadri CS. Geometric reductivity over arbitrary base. Adv. Math., 1977, 26(3): 225-274
|
| [44] |
SGA3: Schémas en Groupes (SGA 3), Tome III. Structure des Schémas en Groupes Réductifs. Doc. Math. (Paris), vol. 8. Soc. Math. France, Paris (2011)
|
| [45] |
Sibirskiĭ, K.S.: Unitary and orthogonal invariants of matrices. Dokl. Akad. Nauk SSSR 172, 40–43 (1967)
|
| [46] |
Taylor R. Galois representations associated to Siegel modular forms of low weight. Duke Math. J., 1991, 63(2): 281-332
|
| [47] |
The Stacks Project Authors: The Stacks Project. https://stacks.math.columbia.edu (2023)
|
| [48] |
Tilouine J. Deformations of Galois Representations and Hecke Algebras, 1996, New Delhi, Narosa Publishing House
|
| [49] |
Van der Kallen W. Lectures on Frobenius Splittings and B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B$$\end{document}-Modules, 1993, Berlin, Springer-Verlag
|
| [50] |
Wang-Erickson, C.W.: Moduli of Galois representations. Ph.D. Thesis, Harvard University, ProQuest LLC, Ann Arbor (2013)
|
| [51] |
Weidner M. Pseudocharacters of homomorphisms into classical groups. Transform. Groups, 2020, 25(4): 1345-1370
|
| [52] |
Weiss, A.: On the images of Galois representations attached to low weight Siegel modular forms. J. Lond. Math. Soc. (2) 106(1), 358–387 (2022)
|
| [53] |
Wiles A. On ordinary λ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda $$\end{document}-adic representations associated to modular forms. Invent. Math., 1988, 94(3): 529-574
|
| [54] |
Zhu, X.: Coherent sheaves on the stack of Langlands parameters. arXiv:2008.02998 (2020)
|
| [55] |
Zubkov AN. On the procedure of calculation of the invariants of an adjoint action of classical groups. Commun. Algebra, 1994, 22(11): 4457-4474
|
| [56] |
Zubkov AN. Invariants for an adjoint action of classical groups. Algebra Logic, 1999, 38(5): 299-318
|
Funding
Deutsche Forschungsgemeinschaft(444845124)
RIGHTS & PERMISSIONS
The Author(s)
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.