Generalized Optimal Degenerations of Fano Varieties

Linsheng Wang

Peking Mathematical Journal ›› : 1 -33.

PDF
Peking Mathematical Journal ›› :1 -33. DOI: 10.1007/s42543-025-00112-3
Original Article
research-article

Generalized Optimal Degenerations of Fano Varieties

Author information +
History +
PDF

Abstract

We prove a generalization of the algebraic version of Tian conjecture. Precisely, for any smooth strictly increasing function

g:RR>0
with
logg
convex, we define the
Hg
-invariant on a Fano variety X generalizing the
H
-invariant introduced by Tian–Zhang–Zhang–Zhu and show that
Hg
admits a unique minimizer. Such a minimizer will induce the g-optimal degeneration of the Fano variety X, whose limit space admits a
g
-soliton. We present an example of Fano threefold which has the same g-optimal degenerations for any g.

Keywords

Fano varieties / Generalized optimal degenerations / Generalized H-invariants /

-weighted K-stability')">
g
-weighted K-stability
/
g
-soliton metrics')">
g
-soliton metrics
/ 14J45 / 32Q20 / 14D20

Cite this article

Download citation ▾
Linsheng Wang. Generalized Optimal Degenerations of Fano Varieties. Peking Mathematical Journal 1-33 DOI:10.1007/s42543-025-00112-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abban, H., Zhuang, Z.Q.: K-stability of Fano varieties via admissible flags. Forum Math. Pi 10(43), Paper No. e15, 43 pp. (2022)

[2]

Bamler, R.: Convergence of Ricci flows with bounded scalar curvature. Ann. Math. 188(3), 753–831 (2018)

[3]

Birkar, C.: Anti-pluricanonical systems on Fano varieties. Ann. Math. 190(2), 345–463 (2019)

[4]

Birkar C, Cascini P, Hacon CD, McKernan J. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 2010, 23(2): 405-468

[5]

Blum, H., Jonsson, M.: Thresholds, valuations, and K-stability. Adv. Math. 365, Paper No. 107062, 57 pp. (2020)

[6]

Blum H, Liu YC, Xu CY. Openness of K-semistability for Fano varieties. Duke Math. J., 2022, 171(13): 2753-2797

[7]

Blum, H., Liu, Y.C., Xu, C.Y., Zhuang, Z.Q.: The existence of the Kähler–Ricci soliton degeneration. Forum Math. Pi 11, Paper No. e9, 28 pp. (2023)

[8]

Boucksom, S., Chen, H.Y.: Okounkov bodies of filtered linear series. Compos. Math. 147(4), 1205–1229 (2011)

[9]

Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67(2), 743–841 (2017)

[10]

Chen XX, Wang B. Space of Ricci flows (II)—Part B: Weak compactness of the flows. J. Different. Geom., 2020, 116(1): 1-123

[11]

Chen, Z.Q.: Stable degeneration of families of klt singularities with constant local volume. Forum Math. Sigma 13, Paper No. e158, 43 pp. (2025)

[12]

Delcroix, T.: Weight sensitivity in K-stability of Fano varieties. arXiv:2411.07864 (2024)

[13]

Dervan, R., Székelyhidi, G.: The Kähler–Ricci flow and optimal degenerations. J. Different. Geom. 116(1), 187–203 (2020)

[14]

Hacon, C.D., McKernan, J., Xu, C.Y.: On the birational automorphisms of varieties of general type. Ann. Math. 177(3), 1077–1111 (2013)

[15]

Hacon, C.D., McKernan, J., Xu, C.Y.: ACC for log canonical thresholds. Ann. Math. 180(2), 523–571 (2014)

[16]

Han, J.Y., Li, C.: On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. Comm. Pure Appl. Math. 76(9), 1793–1867 (2023)

[17]

Han, J.Y., Li, C.: Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. Geom. Topol. 28(2), 539–592 (2024)

[18]

Jonsson, M., Mustaţă, M.: Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble), 62(6), 2145–2209 (2012)

[19]

Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 783–835 (2009)

[20]

Li C. G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G$$\end{document}-uniform stability and Kähler-Einstein metrics on Fano varieties. Invent. Math., 2022, 227(2): 661-744

[21]

Li C, Xu CY. Special test configuration and K-stability of Fano varieties. Ann. Math., 2014, 180(1): 197-232

[22]

Li C, Xu CY. Stability of valuations: Higher rational rank. Peking Math. J., 2018, 1(1): 1-79

[23]

Liu YC, Xu CY, Zhuang ZQ. Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. Math., 2022, 196(2): 507-566

[24]

Miao MH, Tian G. A note on Kähler–Ricci flow on Fano threefolds. Peking Math. J., 2025, 8(1): 191-199

[25]

Miao, M.H., Wang, L.S.: Optimal degenerations of K-unstable Fano threefolds. arXiv:2401.13999 (2024)

[26]

Miao, M.H., Wang, L.S.: Kähler–Ricci solitons on Fano threefolds with non-trivial moduli. Math. Ann., 392(3), 4483–4523 (2025)

[27]

Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

[28]

Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365(12), 6669–6695 (2013)

[29]

Tian G, Zhang ZL. Regularity of Kähler–Ricci flows on Fano manifolds. Acta Math., 2016, 216(1): 127-176

[30]

Wang, F., Zhu, X.H.: Tian’s partial C0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^0$$\end{document}-estimate implies Hamilton–Tian’s conjecture. Adv. Math. 381, Paper No. 107619, 29 pp. (2021)

[31]

Wang, L.S.: A valuative criterion of K-polystability. arXiv:2406.06176 (2024) (To appear in Trans. Amer. Math. Soc.)

[32]

Wang, L.S.: K-polystability and reduced uniform K-stability of log Fano cone singularities. arXiv:2505.10828 (2025)

[33]

Xu, C.Y.: A minimizing valuation is quasi-monomial. Ann. Math. 191(3), 1003–1030 (2020)

[34]

Xu, C.Y.: K-stability of Fano Varieties. New Math. Monogr., vol. 50. Cambridge University Press, Cambridge (2025)

[35]

Xu, C.Y., Zhuang, Z.Q.: Stable degenerations of singularities. J. Amer. Math. Soc. 38(3), 585–626 (2025)

Funding

Key Technologies Research and Development Program(#2023YFA1010600)

RIGHTS & PERMISSIONS

Peking University

PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

/