Generalized Optimal Degenerations of Fano Varieties
Linsheng Wang
Peking Mathematical Journal ›› : 1 -33.
Generalized Optimal Degenerations of Fano Varieties
We prove a generalization of the algebraic version of Tian conjecture. Precisely, for any smooth strictly increasing function
Fano varieties
/
Generalized optimal degenerations
/
Generalized H-invariants
/
| [1] |
Abban, H., Zhuang, Z.Q.: K-stability of Fano varieties via admissible flags. Forum Math. Pi 10(43), Paper No. e15, 43 pp. (2022) |
| [2] |
Bamler, R.: Convergence of Ricci flows with bounded scalar curvature. Ann. Math. 188(3), 753–831 (2018) |
| [3] |
Birkar, C.: Anti-pluricanonical systems on Fano varieties. Ann. Math. 190(2), 345–463 (2019) |
| [4] |
|
| [5] |
Blum, H., Jonsson, M.: Thresholds, valuations, and K-stability. Adv. Math. 365, Paper No. 107062, 57 pp. (2020) |
| [6] |
|
| [7] |
Blum, H., Liu, Y.C., Xu, C.Y., Zhuang, Z.Q.: The existence of the Kähler–Ricci soliton degeneration. Forum Math. Pi 11, Paper No. e9, 28 pp. (2023) |
| [8] |
Boucksom, S., Chen, H.Y.: Okounkov bodies of filtered linear series. Compos. Math. 147(4), 1205–1229 (2011) |
| [9] |
Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67(2), 743–841 (2017) |
| [10] |
|
| [11] |
Chen, Z.Q.: Stable degeneration of families of klt singularities with constant local volume. Forum Math. Sigma 13, Paper No. e158, 43 pp. (2025) |
| [12] |
Delcroix, T.: Weight sensitivity in K-stability of Fano varieties. arXiv:2411.07864 (2024) |
| [13] |
Dervan, R., Székelyhidi, G.: The Kähler–Ricci flow and optimal degenerations. J. Different. Geom. 116(1), 187–203 (2020) |
| [14] |
Hacon, C.D., McKernan, J., Xu, C.Y.: On the birational automorphisms of varieties of general type. Ann. Math. 177(3), 1077–1111 (2013) |
| [15] |
Hacon, C.D., McKernan, J., Xu, C.Y.: ACC for log canonical thresholds. Ann. Math. 180(2), 523–571 (2014) |
| [16] |
Han, J.Y., Li, C.: On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. Comm. Pure Appl. Math. 76(9), 1793–1867 (2023) |
| [17] |
Han, J.Y., Li, C.: Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. Geom. Topol. 28(2), 539–592 (2024) |
| [18] |
Jonsson, M., Mustaţă, M.: Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble), 62(6), 2145–2209 (2012) |
| [19] |
Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 783–835 (2009) |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
Miao, M.H., Wang, L.S.: Optimal degenerations of K-unstable Fano threefolds. arXiv:2401.13999 (2024) |
| [26] |
Miao, M.H., Wang, L.S.: Kähler–Ricci solitons on Fano threefolds with non-trivial moduli. Math. Ann., 392(3), 4483–4523 (2025) |
| [27] |
Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997) |
| [28] |
Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365(12), 6669–6695 (2013) |
| [29] |
|
| [30] |
Wang, F., Zhu, X.H.: Tian’s partial C0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^0$$\end{document}-estimate implies Hamilton–Tian’s conjecture. Adv. Math. 381, Paper No. 107619, 29 pp. (2021) |
| [31] |
Wang, L.S.: A valuative criterion of K-polystability. arXiv:2406.06176 (2024) (To appear in Trans. Amer. Math. Soc.) |
| [32] |
Wang, L.S.: K-polystability and reduced uniform K-stability of log Fano cone singularities. arXiv:2505.10828 (2025) |
| [33] |
Xu, C.Y.: A minimizing valuation is quasi-monomial. Ann. Math. 191(3), 1003–1030 (2020) |
| [34] |
Xu, C.Y.: K-stability of Fano Varieties. New Math. Monogr., vol. 50. Cambridge University Press, Cambridge (2025) |
| [35] |
Xu, C.Y., Zhuang, Z.Q.: Stable degenerations of singularities. J. Amer. Math. Soc. 38(3), 585–626 (2025) |
Peking University
/
| 〈 |
|
〉 |