Spectral Transfer for Metaplectic Groups. II. Hecke Algebra Correspondences
Fei Chen , Wen-Wei Li
Peking Mathematical Journal ›› : 1 -38.
Spectral Transfer for Metaplectic Groups. II. Hecke Algebra Correspondences
Let
Hecke algebra / Metaplectic group / Local Langlands correspondence / Primary 22E50 / Secondary 11F70 / 20C08
| [1] |
Arthur, J.: The Endoscopic Classification of Representations—Orthogonal and Symplectic Groups. Amer. Math. Soc. Colloq. Publ., vol. 61. Amer. Math. Soc., Providence, RI (2013) |
| [2] |
Bushnell, C.J., Henniart, G., Kutzko, P.C.: Types and explicit Plancherel formulae for reductive $p$-adic groups. In: On Certain $L$-Functions, Clay Math. Proc., vol. 13, pp. 55–80. Amer. Math. Soc., Providence, RI (2011) |
| [3] |
Bushnell, C.J., Kutzko, P.C.: Smooth representations of reductive $p$-adic groups: structure theory via types. Proc. London Math. Soc. 77(3), 582–634 (1998) |
| [4] |
Chen, F.: Commutation of transfer and Aubert-Zelevinski involution for metaplectic groups. arXiv: 2410.02481 (2024) |
| [5] |
Chen, F., Li, W.-W.: Intertwining operators in the Takeda–Wood isomorphism. arXiv:2312.00400v2 (2024) |
| [6] |
Gan, W.T.: The Shimura correspondence à la Waldspurger. Course notes for the POSTECH Theta festival, https://www.scribd.com/document/488061503/shimura-correspondence-wee-teck-pdf (2011) |
| [7] |
Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical $L$ values, and restriction problems in the representation theory of classical groups. Astérisque 346, 1–109 (2012) |
| [8] |
Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148(6), 1655–1694 (2012) |
| [9] |
|
| [10] |
Gross, B.H., Reeder, M.: Arithmetic invariants of discrete Langlands parameters. Duke Math. J. 154(3), 431–508 (2010) |
| [11] |
Heiermann, V., Prasad, D. (eds.): Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms. Lecture Notes in Math., vol. 2221, Springer, Cham (2018) |
| [12] |
Ishimoto, H.: Local intertwining relation for metaplectic groups. Compos. Math. 156(8), 1560–1594 (2020) |
| [13] |
Ishimoto, H.: The endoscopic classification of representations of non-quasi-split odd special orthogonal groups. Int. Math. Res. Not. IMRN 2024(14), 10939–11012 (2024) |
| [14] |
Kaletha, T., Minguez, A., Shin, S.W., White, P.-J.: Endoscopic classification of representations: Inner forms of unitary groups. arXiv:1409.3731 (2014) |
| [15] |
Li, W.-W.: Transfert d’intégrales orbitales pour le groupe métaplectique. Compos. Math. 147(2), 524–590 (2011) |
| [16] |
Li, W.-W.: Spectral transfer for metaplectic groups. I. Local character relations. J. Inst. Math. Jussieu 18(1), 25–123 (2019) |
| [17] |
Li, W.-W.: Arthur packets for metaplectic groups. arXiv:2410.13606 (2024) |
| [18] |
Li, W.-W.: Variation of additive characters in the transfer for Mp(2n). arXiv:2411.03091 (2024) |
| [19] |
Luo, C.: Endoscopic character identities for metaplectic groups. J. Reine Angew. Math. 768, 1–37 (2020) |
| [20] |
Luo, C.: Knapp–Stein dimension theorem for finite central covering groups. Pacific J. Math. 306(1), 265–280 (2020) |
| [21] |
Lusztig, G.: Classification of unipotent representations of simple $p$-adic groups. Internat. Math. Res. Notices 1995(11), 517–589 (1995) |
| [22] |
Moeglin, C.: Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramétre de Langlands. In: Automorphic Forms and Related Geometry: Assessing the Legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, pp. 295–336. Amer. Math. Soc., Providence, RI (2014) |
| [23] |
Moeglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps $p$-adique. Lecture Notes in Math., vol. 1291. Springer-Verlag, Berlin (1987) |
| [24] |
Ranga Rao, R.: On some explicit formulas in the theory of Weil representation. Pacific J. Math. 157(2), 335–371 (1993) |
| [25] |
Silberger, A.J., Zink, E.-W.: Langlands classification for $L$-parameters. J. Algebra 511, 299–357 (2018) |
| [26] |
Takeda, S., Wood, A.: Hecke algebra correspondences for the metaplectic group. Trans. Amer. Math. Soc. 370(2), 1101–1121 (2018) |
| [27] |
Tate, J.: Number theoretic background. In: Automorphic Forms, Representations and $L$-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., vol. XXXIII, pp. 3–26. Amer. Math. Soc., Providence, RI (1979) |
| [28] |
Xu, B.: On the cuspidal support of discrete series for $p$-adic quasisplit $Sp(N)$ and $SO(N)$. Manuscripta Math. 154(3–4), 441–502 (2017) |
Peking University
/
| 〈 |
|
〉 |