PDF
Abstract
We compute the orbifold Euler characteristics of $\overline{\mathcal M}_{g,n}$ by applying the formalisms developed in (Wang et al., J. High Energy Phys. 2019(4):135, 2019; Zhou, arXiv:1412.1604, 2014). We take the works of Harer–Zagier (Invent. Math. 85(3):457–485, 1986) and Bini–Harer (J. Eur. Math. Soc. 13(2):487–512, 2011) as the starting point, and prove two types of recursion relations to compute $\chi (\overline{{\mathcal {M}}}_{g,n})$. As applications of these recursions, we give some numerical data and derive some closed formulas, and generalize Manin’s functional equation for $\chi (\overline{{\mathcal {M}}}_{0,n})$ to higher genera cases. Moreover, in genus zero the results are related to Ramanujan polynomials. We also show that the generating series of $\chi ({\overline{{{\mathcal {M}}}}}_{g,n})$ is the logarithm of a particular tau-function of KP hierarchy evaluated at times specified by the generating series of $\chi ({{\mathcal {M}}}_{g,n})$.
Keywords
Moduli spaces of stable curves
/
Orbifold Euler characteristics
/
Recursions
/
KP hierarchy
/
14H10
/
14H81
/
37K25
Cite this article
Download citation ▾
Zhiyuan Wang, Jian Zhou.
Orbifold Euler Characteristics of ${\overline{{{\mathcal {M}}}}}_{g,n}$.
Peking Mathematical Journal 1-52 DOI:10.1007/s42543-025-00110-5
| [1] |
AganagicM, BouchardV, KlemmA. Topological strings and (almost) modular forms. Commun. Math. Phys., 2008, 277(3): 771-819
|
| [2] |
AlexandrovA. Cut-and-join operator representation for Kontsevich–Witten tau-function. Mod. Phys. Lett. A, 2011, 26(29): 2193-2199
|
| [3] |
BarnesEW. The theory of the $G$-function. Quart. J. Pure Appl. Math., 1900, 31: 264-314
|
| [4] |
Berndt, B.C.: Combinatorial analysis and series inversions. In: Ramanujan’s Notebooks. Part I, pp. 44–84. Springer, New York (1985)
|
| [5] |
Berndt, B.C., Evans, R.J., Wilson, B.M.: Chapter 3 of Ramanujan’s second notebook. Adv. Math. 49(2), 123–169 (1983)
|
| [6] |
BershadskyM, CecottiS, OoguriH, VafaC. Holomorphic anomalies in topological field theories. Nucl. Phys. B, 1993, 405(2–3): 279-304
|
| [7] |
BershadskyM, CecottiS, OoguriH, VafaC. Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys., 1994, 165(2): 311-427
|
| [8] |
BiniG, GaiffiG, PolitoM. A formula for the Euler characteristic of ${{\overline{\cal{M} }}}_{2, n}$. Math. Z., 2001, 236(3): 491-523
|
| [9] |
BiniG, HarerJ. Euler characteristics of moduli spaces of curves. J. Eur. Math. Soc., 2011, 13(2): 487-512
|
| [10] |
ChenWYC, GuoVJW. Bijections behind the Ramanujan polynomials. Adv. Appl. Math., 2001, 27(2–3): 336-356
|
| [11] |
Chen, W.Y.C., Yang, H.R.L.: A context-free grammar for the Ramanujan–Shor polynomials. Adv. Appl. Math. 126, Paper No. 101908, 24 pp. (2019)
|
| [12] |
ClausenT. Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen. Astron. Nachr., 1840, 17(22): 351-352
|
| [13] |
DeligneP, MumfordD. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., 1969, 36: 75-109
|
| [14] |
DenefJ, LoeserF. Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math., 1999, 135(1): 201-232
|
| [15] |
DistlerJ, VafaC. A critical matrix model at $c=1$. Mod. Phys. Lett. A, 1991, 6(3): 259-270
|
| [16] |
DoN, NorburyP. Counting lattice points in compactified moduli spaces of curves. Geom. Topol., 2011, 15(4): 2321-2350
|
| [17] |
Drake, B., Gessel, I.M., Xin, G.: Three proofs and a generalization of the Goulden–Litsyn–Shevelev conjecture on a sequence arising in algebraic geometry. J. Integer Seq. 10(3), Article 07.3.7, 11 pp. (2007)
|
| [18] |
Dumont, D., Ramamonjisoa, A.: Grammaire de Ramanujan et arbres de Cayley. Electron. J. Combin. 3(2), Research Paper 17, 18 pp. (1996)
|
| [19] |
Eynard, B.: Large $N$ expansion of convergent matrix integrals, holomorphic anomalies, and background independence. J. High Energy Phys. 2009(3), 003, 20 pp. (2009)
|
| [20] |
Eynard, B., Orantin, N., Mariño, M.: Holomorphic anomaly and matrix models. J. High Energy Phys. 2007(6), 058, 20 pp. (2007)
|
| [21] |
FaberC, van der GeerG. Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I. C. R. Math. Acad. Sci. Paris, 2004, 338(5): 381-384
|
| [22] |
FerreiraC, LópezJL. An asymptotic expansion of the double gamma function. J. Approx. Theory, 2001, 111: 298-314
|
| [23] |
FultonW, MacPhersonR. A compactification of configuration spaces. Ann. Math., 1994, 139(1): 183-225
|
| [24] |
Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. In: The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129, pp. 199–230. Birkhäuser Boston, Boston, MA (1995)
|
| [25] |
GetzlerE. The semi-classical approximation for modular operads. Commun. Math. Phys., 1998, 194(2): 481-492
|
| [26] |
GetzlerE. Euler characteristics of local systems on ${{\overline{\cal{M} }}}_2$. Compos. Math., 2002, 132(2): 121-135
|
| [27] |
Getzler, E., Looijenga, E.: The Hodge polynomial of ${{\overline{\cal{M}}}}_{3,1}$. arXiv:math.AG/9910174 (1999)
|
| [28] |
Goulden, I.P., Litsyn, S., Shevelev, V.: On a sequence arising in algebraic geometry. J. Integer Seq. 8(4), Article 05.4.7, 9 pp. (1999)
|
| [29] |
Grimm, T.W., Klemm, A., Mariño, M., Weiss, M.: Direct integration of the topological string. J. High Energy Phys. 2007(8), 058, 78 pp. (2007)
|
| [30] |
HarerJ, ZagierD. The Euler characteristic of the moduli space of curves. Invent. Math., 1986, 85(3): 457-485
|
| [31] |
KeelS. Intersection theory of moduli space of stable $n$-pointed curves of genus zero. Trans. Am. Math. Soc., 1992, 330(2): 545-574
|
| [32] |
Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. arXiv:hep-th/9906046 (1999)
|
| [33] |
Knudsen, F.F.: The projectivity of the moduli space of stable curves, II. The stacks $M_{g, n}$. Math. Scand. 52(2), 161–199 (1983)
|
| [34] |
KontsevichM. Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys., 1992, 147(1): 1-23
|
| [35] |
Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: The Gel’fand Mathematical Seminars, 1990–1992, pp. 173–187. Birkhäuser Boston, Boston, MA (1993)
|
| [36] |
Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, pp. 97–121. Birkhäuser, Basel (1994)
|
| [37] |
Lando, S., Zvonkin, A.: Graphs on Surfaces and Their Applications. Encyclopaedia Math. Sci., vol. 141, Springer-Verlag, Berlin (2004)
|
| [38] |
LiuK, XuH. New properties of the intersection numbers on moduli spaces of curves. Math. Res. Lett., 2007, 14(6): 1041-1054
|
| [39] |
LiuK, XuH. Intersection numbers and automorphisms of stable curves. Mich. Math. J., 2009, 58(2): 385-400
|
| [40] |
Manin, Y.I.: Generating functions in algebraic geometry and sums over trees. In: The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129, pp. 401–417. Birkhäuser Boston, Boston, MA (1995)
|
| [41] |
Manin, Y.I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. Amer. Math. Soc. Colloq. Publ., vol. 47. American Mathematical Society, Providence, RI (1999)
|
| [42] |
Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)
|
| [43] |
NikeghbaliA, YorM. The Barnes $G$ function and its relations with sums and products of generalized Gamma convolution variables. Electron. Commun. Probab., 2009, 14: 396-411
|
| [44] |
NishigakiS, YoneyaT. A nonperturbative theory of randomly branching chains. Nucl. Phys. B, 1991, 348(3): 787-807
|
| [45] |
Nishigaki, S., Yoneya, T.: The double-scaling limit of O($N$) vectormodels and the KP hierarchy. Phys. Lett. B 268(1), 35–39 (1991)
|
| [46] |
PennerRC. Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom., 1988, 27(1): 35-53
|
| [47] |
Rota, G.-C.: On the foundations of combinatorial theory, I. Theory of Möbius functions. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2(4), 340–368 (1964)
|
| [48] |
SatoM. Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds. RIMS Kôkyûroku, 1981, 439: 30-46
|
| [49] |
ShorPW. A new proof of Cayley’s formula for counting labeled trees. J. Comb. Theory Ser. A, 1995, 71(1): 154-158
|
| [50] |
Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org (2002)
|
| [51] |
’t Hooft, G.: A planar diagram theory for strong interactions. Nuclear Phys. B 72(3), 461–473 (1974)
|
| [52] |
von StaudtKGC. Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen. J. Reine Angew. Math., 1840, 21: 372-374
|
| [53] |
Wang, Z., Zhou, J.: A unified approach to holomorphic anomaly equations and quantum spectral curves. J. High Energy Phys. 2019(4), 135, 54 pp. (2019)
|
| [54] |
Wang, Z., Zhou, J.: Fourier-like transforms of stable graphs and holomorphic anomaly equations. arXiv:1905.03436 (2019)
|
| [55] |
Wang, Z., Zhou, J.: Möbius inversion and duality of summations of stable graphs. arXiv:2401.11717 (2024)
|
| [56] |
Wang, Z., Zhou, J.: Topological 1D gravity, KP hierarchy, and orbifold Euler characteristics of ${{\overline{\cal{M} }}}_{g, n}$. Nucl. Phys. B 1012, Paper No. 116822, 25 pp. (2025)
|
| [57] |
Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243–310. Lehigh University, Bethlehem, PA (1991)
|
| [58] |
Witten, E.: Quantum background independence in string theory. arXiv:hep-th/9306122 (1993)
|
| [59] |
Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. J. High Energy Phys. 2004(7), 047, 20 pp. (2004)
|
| [60] |
YasudaT. Motivic integration over Deligne–Mumford stacks. Adv. Math., 2006, 207(2): 707-761
|
| [61] |
ZengJ. A Ramanujan sequence that refines the Cayley formula for trees. Ramanujan J., 1999, 3(1): 45-54
|
| [62] |
Zhou, J.: Solution of W-constraints for R-spin intersection numbers. arXiv:1305.6991 (2013)
|
| [63] |
Zhou, J.: On topological 1D gravity, I. arXiv:1412.1604 (2014)
|
| [64] |
Zhou, J.: Emergent geometry and mirror symmetry of a point. arXiv:1507.01679 (2015)
|
| [65] |
Zhou, J.: Emergent geometry of KP hierarchy. Acta Math. Sin. (Engl. Ser.) 40(1), 3–25 (2024)
|
Funding
National Natural Science Foundation of China(12371254)
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.