Orbifold Euler Characteristics of ${\overline{{{\mathcal {M}}}}}_{g,n}$

Zhiyuan Wang , Jian Zhou

Peking Mathematical Journal ›› : 1 -52.

PDF
Peking Mathematical Journal ›› :1 -52. DOI: 10.1007/s42543-025-00110-5
Original Article
research-article

Orbifold Euler Characteristics of ${\overline{{{\mathcal {M}}}}}_{g,n}$

Author information +
History +
PDF

Abstract

We compute the orbifold Euler characteristics of $\overline{\mathcal M}_{g,n}$ by applying the formalisms developed in (Wang et al., J. High Energy Phys. 2019(4):135, 2019; Zhou, arXiv:1412.1604, 2014). We take the works of Harer–Zagier (Invent. Math. 85(3):457–485, 1986) and Bini–Harer (J. Eur. Math. Soc. 13(2):487–512, 2011) as the starting point, and prove two types of recursion relations to compute $\chi (\overline{{\mathcal {M}}}_{g,n})$. As applications of these recursions, we give some numerical data and derive some closed formulas, and generalize Manin’s functional equation for $\chi (\overline{{\mathcal {M}}}_{0,n})$ to higher genera cases. Moreover, in genus zero the results are related to Ramanujan polynomials. We also show that the generating series of $\chi ({\overline{{{\mathcal {M}}}}}_{g,n})$ is the logarithm of a particular tau-function of KP hierarchy evaluated at times specified by the generating series of $\chi ({{\mathcal {M}}}_{g,n})$.

Keywords

Moduli spaces of stable curves / Orbifold Euler characteristics / Recursions / KP hierarchy / 14H10 / 14H81 / 37K25

Cite this article

Download citation ▾
Zhiyuan Wang, Jian Zhou. Orbifold Euler Characteristics of ${\overline{{{\mathcal {M}}}}}_{g,n}$. Peking Mathematical Journal 1-52 DOI:10.1007/s42543-025-00110-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AganagicM, BouchardV, KlemmA. Topological strings and (almost) modular forms. Commun. Math. Phys., 2008, 277(3): 771-819

[2]

AlexandrovA. Cut-and-join operator representation for Kontsevich–Witten tau-function. Mod. Phys. Lett. A, 2011, 26(29): 2193-2199

[3]

BarnesEW. The theory of the $G$-function. Quart. J. Pure Appl. Math., 1900, 31: 264-314

[4]

Berndt, B.C.: Combinatorial analysis and series inversions. In: Ramanujan’s Notebooks. Part I, pp. 44–84. Springer, New York (1985)

[5]

Berndt, B.C., Evans, R.J., Wilson, B.M.: Chapter 3 of Ramanujan’s second notebook. Adv. Math. 49(2), 123–169 (1983)

[6]

BershadskyM, CecottiS, OoguriH, VafaC. Holomorphic anomalies in topological field theories. Nucl. Phys. B, 1993, 405(2–3): 279-304

[7]

BershadskyM, CecottiS, OoguriH, VafaC. Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys., 1994, 165(2): 311-427

[8]

BiniG, GaiffiG, PolitoM. A formula for the Euler characteristic of ${{\overline{\cal{M} }}}_{2, n}$. Math. Z., 2001, 236(3): 491-523

[9]

BiniG, HarerJ. Euler characteristics of moduli spaces of curves. J. Eur. Math. Soc., 2011, 13(2): 487-512

[10]

ChenWYC, GuoVJW. Bijections behind the Ramanujan polynomials. Adv. Appl. Math., 2001, 27(2–3): 336-356

[11]

Chen, W.Y.C., Yang, H.R.L.: A context-free grammar for the Ramanujan–Shor polynomials. Adv. Appl. Math. 126, Paper No. 101908, 24 pp. (2019)

[12]

ClausenT. Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen. Astron. Nachr., 1840, 17(22): 351-352

[13]

DeligneP, MumfordD. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., 1969, 36: 75-109

[14]

DenefJ, LoeserF. Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math., 1999, 135(1): 201-232

[15]

DistlerJ, VafaC. A critical matrix model at $c=1$. Mod. Phys. Lett. A, 1991, 6(3): 259-270

[16]

DoN, NorburyP. Counting lattice points in compactified moduli spaces of curves. Geom. Topol., 2011, 15(4): 2321-2350

[17]

Drake, B., Gessel, I.M., Xin, G.: Three proofs and a generalization of the Goulden–Litsyn–Shevelev conjecture on a sequence arising in algebraic geometry. J. Integer Seq. 10(3), Article 07.3.7, 11 pp. (2007)

[18]

Dumont, D., Ramamonjisoa, A.: Grammaire de Ramanujan et arbres de Cayley. Electron. J. Combin. 3(2), Research Paper 17, 18 pp. (1996)

[19]

Eynard, B.: Large $N$ expansion of convergent matrix integrals, holomorphic anomalies, and background independence. J. High Energy Phys. 2009(3), 003, 20 pp. (2009)

[20]

Eynard, B., Orantin, N., Mariño, M.: Holomorphic anomaly and matrix models. J. High Energy Phys. 2007(6), 058, 20 pp. (2007)

[21]

FaberC, van der GeerG. Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I. C. R. Math. Acad. Sci. Paris, 2004, 338(5): 381-384

[22]

FerreiraC, LópezJL. An asymptotic expansion of the double gamma function. J. Approx. Theory, 2001, 111: 298-314

[23]

FultonW, MacPhersonR. A compactification of configuration spaces. Ann. Math., 1994, 139(1): 183-225

[24]

Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. In: The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129, pp. 199–230. Birkhäuser Boston, Boston, MA (1995)

[25]

GetzlerE. The semi-classical approximation for modular operads. Commun. Math. Phys., 1998, 194(2): 481-492

[26]

GetzlerE. Euler characteristics of local systems on ${{\overline{\cal{M} }}}_2$. Compos. Math., 2002, 132(2): 121-135

[27]

Getzler, E., Looijenga, E.: The Hodge polynomial of ${{\overline{\cal{M}}}}_{3,1}$. arXiv:math.AG/9910174 (1999)

[28]

Goulden, I.P., Litsyn, S., Shevelev, V.: On a sequence arising in algebraic geometry. J. Integer Seq. 8(4), Article 05.4.7, 9 pp. (1999)

[29]

Grimm, T.W., Klemm, A., Mariño, M., Weiss, M.: Direct integration of the topological string. J. High Energy Phys. 2007(8), 058, 78 pp. (2007)

[30]

HarerJ, ZagierD. The Euler characteristic of the moduli space of curves. Invent. Math., 1986, 85(3): 457-485

[31]

KeelS. Intersection theory of moduli space of stable $n$-pointed curves of genus zero. Trans. Am. Math. Soc., 1992, 330(2): 545-574

[32]

Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. arXiv:hep-th/9906046 (1999)

[33]

Knudsen, F.F.: The projectivity of the moduli space of stable curves, II. The stacks $M_{g, n}$. Math. Scand. 52(2), 161–199 (1983)

[34]

KontsevichM. Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys., 1992, 147(1): 1-23

[35]

Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: The Gel’fand Mathematical Seminars, 1990–1992, pp. 173–187. Birkhäuser Boston, Boston, MA (1993)

[36]

Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, pp. 97–121. Birkhäuser, Basel (1994)

[37]

Lando, S., Zvonkin, A.: Graphs on Surfaces and Their Applications. Encyclopaedia Math. Sci., vol. 141, Springer-Verlag, Berlin (2004)

[38]

LiuK, XuH. New properties of the intersection numbers on moduli spaces of curves. Math. Res. Lett., 2007, 14(6): 1041-1054

[39]

LiuK, XuH. Intersection numbers and automorphisms of stable curves. Mich. Math. J., 2009, 58(2): 385-400

[40]

Manin, Y.I.: Generating functions in algebraic geometry and sums over trees. In: The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129, pp. 401–417. Birkhäuser Boston, Boston, MA (1995)

[41]

Manin, Y.I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. Amer. Math. Soc. Colloq. Publ., vol. 47. American Mathematical Society, Providence, RI (1999)

[42]

Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)

[43]

NikeghbaliA, YorM. The Barnes $G$ function and its relations with sums and products of generalized Gamma convolution variables. Electron. Commun. Probab., 2009, 14: 396-411

[44]

NishigakiS, YoneyaT. A nonperturbative theory of randomly branching chains. Nucl. Phys. B, 1991, 348(3): 787-807

[45]

Nishigaki, S., Yoneya, T.: The double-scaling limit of O($N$) vectormodels and the KP hierarchy. Phys. Lett. B 268(1), 35–39 (1991)

[46]

PennerRC. Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom., 1988, 27(1): 35-53

[47]

Rota, G.-C.: On the foundations of combinatorial theory, I. Theory of Möbius functions. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2(4), 340–368 (1964)

[48]

SatoM. Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds. RIMS Kôkyûroku, 1981, 439: 30-46

[49]

ShorPW. A new proof of Cayley’s formula for counting labeled trees. J. Comb. Theory Ser. A, 1995, 71(1): 154-158

[50]

Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org (2002)

[51]

’t Hooft, G.: A planar diagram theory for strong interactions. Nuclear Phys. B 72(3), 461–473 (1974)

[52]

von StaudtKGC. Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen. J. Reine Angew. Math., 1840, 21: 372-374

[53]

Wang, Z., Zhou, J.: A unified approach to holomorphic anomaly equations and quantum spectral curves. J. High Energy Phys. 2019(4), 135, 54 pp. (2019)

[54]

Wang, Z., Zhou, J.: Fourier-like transforms of stable graphs and holomorphic anomaly equations. arXiv:1905.03436 (2019)

[55]

Wang, Z., Zhou, J.: Möbius inversion and duality of summations of stable graphs. arXiv:2401.11717 (2024)

[56]

Wang, Z., Zhou, J.: Topological 1D gravity, KP hierarchy, and orbifold Euler characteristics of ${{\overline{\cal{M} }}}_{g, n}$. Nucl. Phys. B 1012, Paper No. 116822, 25 pp. (2025)

[57]

Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243–310. Lehigh University, Bethlehem, PA (1991)

[58]

Witten, E.: Quantum background independence in string theory. arXiv:hep-th/9306122 (1993)

[59]

Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. J. High Energy Phys. 2004(7), 047, 20 pp. (2004)

[60]

YasudaT. Motivic integration over Deligne–Mumford stacks. Adv. Math., 2006, 207(2): 707-761

[61]

ZengJ. A Ramanujan sequence that refines the Cayley formula for trees. Ramanujan J., 1999, 3(1): 45-54

[62]

Zhou, J.: Solution of W-constraints for R-spin intersection numbers. arXiv:1305.6991 (2013)

[63]

Zhou, J.: On topological 1D gravity, I. arXiv:1412.1604 (2014)

[64]

Zhou, J.: Emergent geometry and mirror symmetry of a point. arXiv:1507.01679 (2015)

[65]

Zhou, J.: Emergent geometry of KP hierarchy. Acta Math. Sin. (Engl. Ser.) 40(1), 3–25 (2024)

Funding

National Natural Science Foundation of China(12371254)

RIGHTS & PERMISSIONS

Peking University

PDF

493

Accesses

0

Citation

Detail

Sections
Recommended

/