H-Invariant on Kähler Manifolds

Gang Tian , Xiaohua Zhu

Peking Mathematical Journal ›› : 1 -11.

PDF
Peking Mathematical Journal ›› :1 -11. DOI: 10.1007/s42543-025-00108-z
Original Article
research-article

H-Invariant on Kähler Manifolds

Author information +
History +
PDF

Abstract

We generalize H-invariant associated to TZ metric on any compact Kähler manifold.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Keywords

H-invariant / Kähler–Ricci soliton / TZ-invariant / TZ metric / Primary 53C25 / Secondary 32Q20 / 58D25 / 14L10

Cite this article

Download citation ▾
Gang Tian, Xiaohua Zhu. H-Invariant on Kähler Manifolds. Peking Mathematical Journal 1-11 DOI:10.1007/s42543-025-00108-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blum, H., Liu, Y.C., Xu, C.Y., Zhuang, Z.Q.: The existence of the Kähler–Ricci soliton degeneration. Forum Math. Pi 11, Paper No. e9, 28 pp. (2023)

[2]

DervanR, SzékelyhidiG. Kähler–Ricci flow and optimal degenerations. J. Differ. Geom., 2020, 116(1): 187-203

[3]

Futaki, A.: An obstruction to the existence of Einstein–Kähler metrics. Invent. Math. 73(3), 437–443 (1983)

[4]

Han, J.Y., Li, C.: Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. Geom. Topol. 28(2), 539–592 (2024)

[5]

He, W.Y.: Kähler–Ricci soliton and $H$-functional. Asian J. Math. 20(4), 645–664 (2016)

[6]

Lebrun, G., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4(3), 298–336 (1994)

[7]

Tian, G.: An equivariant version of the $K$-energy. Acta Math. Sin. (Engl. Ser.), 21(1), 1–8 (2005)

[8]

TianG , ZhangL, ZhuXH. Kähler–Ricci flow for deformed complex structures. Trans. Am. Math. Soc., 2023, 376(3): 1999-2046

[9]

Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Am. Math. Soc. 365(12), 6669–6695 (2013)

[10]

Tian, G., Zhu, X.H.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184(2), 271–305 (2000)

[11]

TianG, ZhuXH. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment. Math. Helv., 2002, 77(2): 297-325

[12]

TianG, ZhuXH. Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math., 2013, 678: 223-245

[13]

Tian, G., Zhu, X.H.: Perelman’s entropy and stability of Kähler–Ricci flow. Sci. Sin. Math. 46(5), 685–696 (2016) (in Chinese)

[14]

Tian, G., Zhu, X.H.: Horosymmetric limits of Kähler–Ricci flow on Fano $G$-manifolds. J. Eur. Math. Soc., https://doi.org/10.4171/JEMS/1553 (2024)

[15]

Wang, F., Zhu, X.H.: Tian’s partial $C^0$-estimate implies Hamilton–Tian’s conjecture. Adv. Math. 381, Paper No. 107619, 29 pp. (2021)

[16]

Wang, F., Zhu, X.H.: Uniformly strong convergence of Kähler–Ricci flows on a Fano manifold. Sci. China Math. 65(11), 2335–2370 (2022)

[17]

Wang, F., Zhu, X.H.: Kähler–Ricci flow on ${\textbf{G}}$-spherical Fano manifolds. Peking Math. J., https://doi.org/10.1007/s42543-024-00088-6 (2024)

[18]

Wang, X., Zhu, X.H.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

[19]

Zhou, B., Zhu, X.H.: Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219(4), 1327–1362 (2008)

RIGHTS & PERMISSIONS

Peking University

PDF

226

Accesses

0

Citation

Detail

Sections
Recommended

/