H-Invariant on Kähler Manifolds
We generalize H-invariant associated to TZ metric on any compact Kähler manifold.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
H-invariant / Kähler–Ricci soliton / TZ-invariant / TZ metric / Primary 53C25 / Secondary 32Q20 / 58D25 / 14L10
| [1] |
Blum, H., Liu, Y.C., Xu, C.Y., Zhuang, Z.Q.: The existence of the Kähler–Ricci soliton degeneration. Forum Math. Pi 11, Paper No. e9, 28 pp. (2023) |
| [2] |
|
| [3] |
Futaki, A.: An obstruction to the existence of Einstein–Kähler metrics. Invent. Math. 73(3), 437–443 (1983) |
| [4] |
Han, J.Y., Li, C.: Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. Geom. Topol. 28(2), 539–592 (2024) |
| [5] |
He, W.Y.: Kähler–Ricci soliton and $H$-functional. Asian J. Math. 20(4), 645–664 (2016) |
| [6] |
Lebrun, G., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4(3), 298–336 (1994) |
| [7] |
Tian, G.: An equivariant version of the $K$-energy. Acta Math. Sin. (Engl. Ser.), 21(1), 1–8 (2005) |
| [8] |
|
| [9] |
Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Am. Math. Soc. 365(12), 6669–6695 (2013) |
| [10] |
Tian, G., Zhu, X.H.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184(2), 271–305 (2000) |
| [11] |
|
| [12] |
|
| [13] |
Tian, G., Zhu, X.H.: Perelman’s entropy and stability of Kähler–Ricci flow. Sci. Sin. Math. 46(5), 685–696 (2016) (in Chinese) |
| [14] |
Tian, G., Zhu, X.H.: Horosymmetric limits of Kähler–Ricci flow on Fano $G$-manifolds. J. Eur. Math. Soc., https://doi.org/10.4171/JEMS/1553 (2024) |
| [15] |
Wang, F., Zhu, X.H.: Tian’s partial $C^0$-estimate implies Hamilton–Tian’s conjecture. Adv. Math. 381, Paper No. 107619, 29 pp. (2021) |
| [16] |
Wang, F., Zhu, X.H.: Uniformly strong convergence of Kähler–Ricci flows on a Fano manifold. Sci. China Math. 65(11), 2335–2370 (2022) |
| [17] |
Wang, F., Zhu, X.H.: Kähler–Ricci flow on ${\textbf{G}}$-spherical Fano manifolds. Peking Math. J., https://doi.org/10.1007/s42543-024-00088-6 (2024) |
| [18] |
Wang, X., Zhu, X.H.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004) |
| [19] |
Zhou, B., Zhu, X.H.: Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219(4), 1327–1362 (2008) |
Peking University
/
| 〈 |
|
〉 |