Optimal Higher Regularity for Biharmonic Maps Via Quantitative Stratification

Changyu Guo , Guichun Jiang , Changlin Xiang , Gaofeng Zheng

Peking Mathematical Journal ›› : 1 -40.

PDF
Peking Mathematical Journal ›› : 1 -40. DOI: 10.1007/s42543-025-00107-0
Original Article
research-article

Optimal Higher Regularity for Biharmonic Maps Via Quantitative Stratification

Author information +
History +
PDF

Abstract

This note is devoted to refining the almost optimal regularity results of Breiner and Lamm on minimizing and stationary biharmonic maps via the powerful quantitative stratification method initiated by Cheeger and Naber and significantly developed by Naber and Valtorta for harmonic maps. In particular, we obtain an optimal regularity result for minimizing biharmonic maps.

Keywords

Biharmonic maps / Regularity theory / Quantitative stratification / Quantitative symmetry / Singular set / 53C43 / 35J48

Cite this article

Download citation ▾
Changyu Guo, Guichun Jiang, Changlin Xiang, Gaofeng Zheng. Optimal Higher Regularity for Biharmonic Maps Via Quantitative Stratification. Peking Mathematical Journal 1-40 DOI:10.1007/s42543-025-00107-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AngelsbergG. A monotonicity formula for stationary biharmonic maps. Math. Z., 2006, 252(2): 287-293.

[2]

BethuelF. On the singular set of stationary harmonic maps. Manuscripta Math., 1993, 78(4): 417-443.

[3]

BrandingV, OniciucC. Unique continuation theorems for biharmonic maps. Bull. Lond. Math. Soc., 2019, 51(4): 603-621.

[4]

BreinerC, LammT. Quantitative stratification and higher regularity for biharmonic maps. Manuscripta Math., 2015, 148(3–4): 379-398.

[5]

ChangS-Y, WangL, YangP. A regularity theory of biharmonic maps. Comm. Pure Appl. Math., 1999, 52(9): 1113-1137.

[6]

CheegerJ, HaslhoferR, NaberA. Quantitative stratification and the regularity of mean curvature flow. Geom. Funct. Anal., 2013, 23(3): 828-847.

[7]

CheegerJ, HaslhoferR, NaberA. Quantitative stratification and the regularity of harmonic map flow. Cal. Var. Partial Differential Equations, 2015, 53(1–2): 365-381.

[8]

CheegerJ, JiangW, NaberA. Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below. Ann. of Math. (2), 2021, 193(2): 407-538.

[9]

CheegerJ, NaberA. Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math., 2013, 191(2): 321-339.

[10]

CheegerJ, NaberA. Quantitative stratification and the regularity of harmonic maps and minimal currents. Comm. Pure. Appl. Math., 2013, 66(6): 965-990.

[11]

CheegerJ, NaberA, ValtortaD. Critical sets of elliptic equations. Comm. Pure Appl. Math., 2015, 68(2): 173-209.

[12]

ChenY, ZhuM. Bubbling analysis for extrinsic biharmonic maps from general Riemannian 4-manifolds. Sci China Math, 2023, 66(3): 581-600

[13]

De Lellis, C.: Rectifiable sets, densities and tangent measures. Zur. Lect. Adv. Math., European Mathematical Society (EMS), Zürich (2008)

[14]

EvansLC. Partial regularity for stationary harmonic maps into spheres. Arch. Rat. Mech. Anal., 1991, 116(2): 101-163.

[15]

Guo, C.-Y., Wang, C.Y., Xiang, C.-L.: $L^p$-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions. Calc. Var. Partial Differential Equations 62(1), Paper No. 31, 32 pp. (2023)

[16]

GuoC-Y, XiangC-L. Regularity of solutions for a fourth-order elliptic system via conservation law. J. Lond. Math. Soc. (2), 2020, 101(3): 907-922.

[17]

Guo, C.-Y., Xiang, C.-L., Zheng, G.-F.: The Lamm–Rivière system I: $L^{^{p}}$ regularity theory. Calc. Var. Partial Differential Equations 60(6), Paper No. 213, 32 pp. (2021)

[18]

Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une sphére. C. R. Acad. Sci. Paris Sér. I Math. 311(9), 519-524 (1990)

[19]

LammT. Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. Partial Differential Equations, 2005, 22(4): 421-445.

[20]

Lamm, T., Rivière, T.: Conservation laws for fourth order systems in for dimensions. Comm. Partial Differential Equations 33(1–3), 245–262 (2008)

[21]

LinFH. Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. (2), 1999, 149(3): 785-829.

[22]

LiuL, YinH. Neck analysis for biharmonic maps. Math. Z., 2016, 283(3–4): 807-834.

[23]

MoserR. A variational problem pertaining to biharmonic maps. Comm. Partial Differential Equations, 2008, 33(7–9): 1654-1689.

[24]

NaberA, ValtortaD. Reifenberg-rectifiable and the regularity of stationary and minimizing harmonic maps. Ann. of Math. (2), 2017, 185(1): 131-227.

[25]

NaberA, ValtortaD. Stratification for singular set of approximate harmonic maps. Math. Z., 2018, 290(3–4): 1415-1455.

[26]

NaberA, ValtortaD. The singular structure and regularity of stationary varifolds. J. Eur. Math. Soc. (JEMS), 2020, 22(10): 3305-3382.

[27]

NirenbergL. An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa CI. Sci. (3), 1996, 20(4): 733-737

[28]

PreissD. Geometry of measures in ${\mathbb{R}}^n$: distribution, rectifiability, and densities. Ann. of Math. (2), 1987, 125(3): 537-643.

[29]

Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)

[30]

RivièreT, StruweM. Partial regularity for harmonic maps and related problems. Commun. Pure Appl. Math., 2008, 61(4): 451-463.

[31]

SchevenC. Dimension reduction for the singular set of biharmonic maps. Adv. Cal. Var., 2008, 1(1): 53-91

[32]

Scheven, C.: An optimal partial regularity result for minimizers of an intrinsically defined second-order functional. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1585–1605 (2009)

[33]

SchoenR, UhlenbeckK. A regularity and singularity theory for harmonic maps. J. Diff. Geom., 1982, 17(2): 307-335

[34]

Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel (1996)

[35]

Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differential Equations 33(2), 249–262 (2008)

[36]

StrzeleckiP. On biharmonic maps and their generalizations. Calc. Var. Partial Differential Equations, 2003, 18(4): 401-432.

[37]

WangCY. Biharmonic maps from ${\mathbb{R} }^4$ into a Riemannian manifold. Math. Z., 2004, 247(1): 65-87.

[38]

WangCY. Stationary biharmonic maps from $\mathbb{R} ^m$ into a Riemannian manifold. Comm. Pure Appl. Math., 2004, 57(4): 419-444.

[39]

WangCY. Remarks on biharmonic maps into spheres. Calc. Var. Partial Differential Equations., 2004, 21(3): 221-242.

[40]

WangCY, ZhengSZ. Energy identity of approximate biharmonic maps to Riemannian manifolds and its application. J. Funct. Anal., 2012, 263(4): 960-987.

Funding

National Natural Science Foundation of China(12271296)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/