An Upper Bound for Polynomial Volume Growth of Automorphisms of Zero Entropy

Fei Hu , Chen Jiang

Peking Mathematical Journal ›› : 1 -27.

PDF
Peking Mathematical Journal ›› : 1 -27. DOI: 10.1007/s42543-025-00106-1
Original Article

An Upper Bound for Polynomial Volume Growth of Automorphisms of Zero Entropy

Author information +
History +
PDF

Abstract

Let X be a normal projective variety of dimension d over an algebraically closed field and f an automorphism of X. Suppose that the pullback

f|N1(X)R
of f on the real Néron–Severi space
N1(X)R
is unipotent and denote the index of the eigenvalue 1 by
k+1
. We establish the following upper bound for the polynomial volume growth
plov(f)
of f:
plov(f)(k/2+1)d.
This inequality is optimal in certain cases. Moreover, we prove that
k2(d-1)
, extending a result of Dinh–Lin–Oguiso–Zhang for compact Kähler manifolds to arbitrary characteristic. By combining these two inequalities, we obtain the optimal bound
plov(f)d2,
that affirmatively answers the questions of Cantat–Paris-Romaskevich and Lin–Oguiso–Zhang.

Keywords

Automorphism / Zero entropy / Polynomial volume growth / Gelfand–Kirillov dimension / Quasi-unipotency / Restricted partition / Unimodality / Degree growth

Cite this article

Download citation ▾
Fei Hu, Chen Jiang. An Upper Bound for Polynomial Volume Growth of Automorphisms of Zero Entropy. Peking Mathematical Journal 1-27 DOI:10.1007/s42543-025-00106-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews, G.E.: The Theory of Partitions, Reprint of the 1976 original. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998)

[2]

Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, Vol. I. Progr. Math., vol. 86, pp. 33–85. Birkhäuser Boston, Boston, MA (1990)

[3]

Artin, M., Van den Bergh, M.: Twisted homogeneous coordinate rings. J. Algebra 133(2), 249–271 (1990)

[4]

Berthelot, P., Grothendieck, A., Illusie, L. (eds.): Théorie des intersections et théorème de Riemann–Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Lecture Notes in Math., vol. 225, Springer-Verlag, Berlin-New York (1971)

[5]

Cantat, S.: Dynamics of automorphisms of compact complex surfaces. In: Frontiers in Complex Dynamics, Princeton, Mathematical Series, vol. 51, pp. 463–514. Princeton University Press, Princeton, NJ (2014)

[6]

Cantat, S.: Automorphisms and dynamics: a list of open problems. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Vol. II. Invited Lectures, pp. 619–634. World Sci. Publ., Hackensack, NJ (2018)

[7]

CantatS, Paris-RomaskevichO. Automorphisms of compact Kähler manifolds with slow dynamics. Trans. Amer. Math. Soc., 2021, 37421351-1389.

[8]

CantatS, XieJ. On degrees of birational mappings. Math. Res. Lett., 2020, 272319-337.

[9]

DangN-B. Degrees of iterates of rational maps on normal projective varieties. Proc. Lond. Math. Soc. (3), 2020, 12151268-1310.

[10]

DangN-B, FavreC. Spectral interpretations of dynamical degrees and applications. Ann. Math. (2), 2021, 1941299-359.

[11]

DinhT-C, LinH-Y, OguisoK, ZhangD-Q. Zero entropy automorphisms of compact Kähler manifolds and dynamical filtrations. Geom. Funct. Anal., 2022, 323568-594.

[12]

DinhT-C, SibonyN. Groupes commutatifs d’automorphismes d’une variété kählérienne compacte. Duke Math. J., 2004, 1232311-328.

[13]

Dinh, T.-C., Sibony, N.: Equidistribution problems in complex dynamics of higher dimension. Internat. J. Math. 28(7), 1750057, 31 pp. (2017)

[14]

Fan, Y.-W., Fu, L., Ouchi, G.: Categorical polynomial entropy. Adv. Math. 383, Paper No. 107655, 50 pp. (2021)

[15]

FulgerM, LehmannB. Positive cones of dual cycle classes. Algebr. Geom., 2017, 411-28.

[16]

Fulton, W.: Intersection Theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin (1998)

[17]

Gizatullin, M.H.: Rational G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G$$\end{document}-surfaces. Math. USSR-Izv. 16(1), 103–134 (1981)

[18]

Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978)

[19]

Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. (2) 49(3–4), 217–235 (2003)

[20]

Hu, F.: A theorem of Tits type for automorphism groups of projective varieties in arbitrary Characteristic, With an appendix by Tomohide Terasoma. Math. Ann. 377(3–4), 1573–1602 (2020)

[21]

Hu, F.: Polynomial volume growth of quasi-unipotent automorphisms of abelian varieties (with an appendix in collaboration with Chen Jiang). Int. Math. Res. Not. IMRN. 2024(8), 6374–6399 (2024)

[22]

Hu, F., Truong, T.T.: A dynamical approach to generalized Weil’s Riemann hypothesis and semisimplicity. Sci. China Math. (2025), 30 pp., Published online, https://doi.org/10.1007/s11425-024-2363-9

[23]

Keeler, D.S.: Criteria for σ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sigma $$\end{document}-ampleness. J. Am. Math. Soc. 13(3), 517–532 (2000)

[24]

LabrousseC. Polynomial growth of the volume of balls for zero-entropy geodesic systems. Nonlinearity, 2012, 25113049-3069.

[25]

Lin, H.-Y., Oguiso, K., Zhang, D.-Q.: Polynomial log-volume growth in slow dynamics and the GK-dimensions of twisted homogeneous coordinate rings. J. Noncommut. Geom. 19(2), 451–493 (2025)

[26]

Lo Bianco, F.: On the cohomological action of automorphisms of compact Kähler threefolds. Bull. Soc. Math. France 147(3), 469–514 (2019)

[27]

MarcoJ-P. Polynomial entropies and integrable Hamiltonian systems. Regul. Chaotic Dyn., 2013, 186623-655.

[28]

Proctor, R.A.: Solution of two difficult combinatorial problems with linear algebra. Am. Math. Monthly 89(10), 721–734 (1982)

[29]

Serre, J.-P.: Complex Semisimple Lie Algebras. Springer-Verlag, New York (1987)

[30]

StanleyRP. Some aspects of groups acting on finite posets. J. Combin. Theory Ser. A, 1982, 322132-161.

[31]

TruongTT. Relative dynamical degrees of correspondences over a field of arbitrary characteristic. J. Reine Angew. Math., 2020, 758: 139-182.

[32]

Xie, J.: Algebraic dynamics and recursive inequalities. arXiv:2402.12678 (2024)

[33]

YomdinY. Volume growth and entropy. Israel J. Math., 1987, 573285-300.

[34]

ZhangD-Q. A theorem of Tits type for compact Kähler manifolds. Invent. Math., 2009, 1763449-459.

Funding

National Natural Science Foundation of China(12371045)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/