An Upper Bound for Polynomial Volume Growth of Automorphisms of Zero Entropy
Fei Hu , Chen Jiang
Peking Mathematical Journal ›› : 1 -27.
An Upper Bound for Polynomial Volume Growth of Automorphisms of Zero Entropy
Let X be a normal projective variety of dimension d over an algebraically closed field and f an automorphism of X. Suppose that the pullback
Automorphism / Zero entropy / Polynomial volume growth / Gelfand–Kirillov dimension / Quasi-unipotency / Restricted partition / Unimodality / Degree growth
| [1] |
Andrews, G.E.: The Theory of Partitions, Reprint of the 1976 original. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998) |
| [2] |
Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, Vol. I. Progr. Math., vol. 86, pp. 33–85. Birkhäuser Boston, Boston, MA (1990) |
| [3] |
Artin, M., Van den Bergh, M.: Twisted homogeneous coordinate rings. J. Algebra 133(2), 249–271 (1990) |
| [4] |
Berthelot, P., Grothendieck, A., Illusie, L. (eds.): Théorie des intersections et théorème de Riemann–Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Lecture Notes in Math., vol. 225, Springer-Verlag, Berlin-New York (1971) |
| [5] |
Cantat, S.: Dynamics of automorphisms of compact complex surfaces. In: Frontiers in Complex Dynamics, Princeton, Mathematical Series, vol. 51, pp. 463–514. Princeton University Press, Princeton, NJ (2014) |
| [6] |
Cantat, S.: Automorphisms and dynamics: a list of open problems. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Vol. II. Invited Lectures, pp. 619–634. World Sci. Publ., Hackensack, NJ (2018) |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Dinh, T.-C., Sibony, N.: Equidistribution problems in complex dynamics of higher dimension. Internat. J. Math. 28(7), 1750057, 31 pp. (2017) |
| [14] |
Fan, Y.-W., Fu, L., Ouchi, G.: Categorical polynomial entropy. Adv. Math. 383, Paper No. 107655, 50 pp. (2021) |
| [15] |
|
| [16] |
Fulton, W.: Intersection Theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin (1998) |
| [17] |
Gizatullin, M.H.: Rational G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G$$\end{document}-surfaces. Math. USSR-Izv. 16(1), 103–134 (1981) |
| [18] |
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978) |
| [19] |
Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. (2) 49(3–4), 217–235 (2003) |
| [20] |
Hu, F.: A theorem of Tits type for automorphism groups of projective varieties in arbitrary Characteristic, With an appendix by Tomohide Terasoma. Math. Ann. 377(3–4), 1573–1602 (2020) |
| [21] |
Hu, F.: Polynomial volume growth of quasi-unipotent automorphisms of abelian varieties (with an appendix in collaboration with Chen Jiang). Int. Math. Res. Not. IMRN. 2024(8), 6374–6399 (2024) |
| [22] |
Hu, F., Truong, T.T.: A dynamical approach to generalized Weil’s Riemann hypothesis and semisimplicity. Sci. China Math. (2025), 30 pp., Published online, https://doi.org/10.1007/s11425-024-2363-9 |
| [23] |
Keeler, D.S.: Criteria for σ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sigma $$\end{document}-ampleness. J. Am. Math. Soc. 13(3), 517–532 (2000) |
| [24] |
|
| [25] |
Lin, H.-Y., Oguiso, K., Zhang, D.-Q.: Polynomial log-volume growth in slow dynamics and the GK-dimensions of twisted homogeneous coordinate rings. J. Noncommut. Geom. 19(2), 451–493 (2025) |
| [26] |
Lo Bianco, F.: On the cohomological action of automorphisms of compact Kähler threefolds. Bull. Soc. Math. France 147(3), 469–514 (2019) |
| [27] |
|
| [28] |
Proctor, R.A.: Solution of two difficult combinatorial problems with linear algebra. Am. Math. Monthly 89(10), 721–734 (1982) |
| [29] |
Serre, J.-P.: Complex Semisimple Lie Algebras. Springer-Verlag, New York (1987) |
| [30] |
|
| [31] |
|
| [32] |
Xie, J.: Algebraic dynamics and recursive inequalities. arXiv:2402.12678 (2024) |
| [33] |
|
| [34] |
|
Peking University
/
| 〈 |
|
〉 |