Volumes of Bott–Chern Classes

Sébastien Boucksom , Vincent Guedj , Chinh H. Lu

Peking Mathematical Journal ›› : 1 -43.

PDF
Peking Mathematical Journal ›› : 1 -43. DOI: 10.1007/s42543-025-00105-2
Original Article

Volumes of Bott–Chern Classes

Author information +
History +
PDF

Abstract

We study the volumes of transcendental and possibly non-closed Bott–Chern (1, 1)-classes on an arbitrary compact complex manifold X. We show that the latter belongs to the Fujiki class

C
if and only if it has the bounded mass property —i.e., its Monge–Ampère volumes are bounded above—and there exists a closed Bott–Chern class with positive volume. This yields a positive answer to a conjecture of Boucksom–Demailly–Păun. To this end we extend to the Hermitian context the notion of non-pluripolar products of currents, allowing for the latter to be merely quasi-closed and quasi-positive. We establish a quasi-monotonicity property of Monge–Ampère masses, and moreover show the existence of solutions to degenerate complex Monge–Ampère equations in big classes, together with uniform a priori estimates. This extends to the Hermitian context basic results of Boucksom–Eyssidieux–Guedj–Zeriahi.

Keywords

Monge–Ampère volume / Bott–Chern classes / Hermitian manifolds / Fujiki classes

Cite this article

Download citation ▾
Sébastien Boucksom, Vincent Guedj, Chinh H. Lu. Volumes of Bott–Chern Classes. Peking Mathematical Journal 1-43 DOI:10.1007/s42543-025-00105-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AngellaD, GuedjV, LuCH. Plurisigned Hermitian metrics. Trans. Amer. Math. Soc., 2023, 376(7): 4631-4659

[2]

BedfordE, TaylorBA. The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math., 1976, 37(1): 1-44

[3]

BedfordE, TaylorBA. A new capacity for plurisubharmonic functions. Acta Math., 1982, 149(1–2): 1-40

[4]

Bedford, E., Taylor, B.A.: Fine topology, Šilov boundary, and . J. Funct. Anal. 72(2), 225–251 (1987)

[5]

BlockiZ, KołodziejS. On regularization of plurisubharmonic functions on manifolds. Proc. Amer. Math. Soc., 2007, 135(7): 2089-2093

[6]

BoucksomS. On the volume of a line bundle. Int. J. Math., 2002, 13(10): 1043-1063

[7]

BoucksomS, EyssidieuxP, GuedjV, ZeriahiA. Monge–Ampère equations in big cohomology classes. Acta Math., 2010, 205(2): 199-262

[8]

Cherrier, P.: Équations de Monge–Ampère sur les variétés hermitiennes compactes. Bull. Sci. Math. 111(4), 343–385 (1987)

[9]

ChioseI. The Kähler rank of compact complex manifolds. J. Geom. Anal., 2016, 26(1): 603-615

[10]

Dang, Q.-T.: Hermitian null loci. arXiv:2404.01126 (2024)

[11]

DarvasT, Di NezzaE, LuHC. Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity. Anal. PDE, 2018, 11(8): 2049-2087

[12]

DarvasT, Di NezzaE, LuHC. Relative pluripotential theory on compact Kähler manifolds. Pure Appl. Math. Q., 2025, 21(3): 1037-1118

[13]

Darvas, T., Reboulet, R., Witt Nyström, D., Xia, M., Zhang, K.: Transcendental Okounkov bodies. arXiv:2309.07584v2 (2025) (To appear in J. Diff. Geom.)

[14]

Demailly, J.-P.: Une preuve simple de la conjecture de Grauert–Riemenschneider. In: Séminaire d’Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986, Lecture Notes in Math., vol. 1295, pp. 24–47. Springer, Berlin (1987)

[15]

Demailly, J.-P.: Complex Analytic and Differential Geometry. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012)

[16]

DemaillyJ-P, PăunM. Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math., 2004, 159(3): 1247-1274

[17]

DinewS. Pluripotential theory on compact Hermitian manifolds. Ann. Fac. Sci. Toulouse Math., 2016, 25(1): 91-139

[18]

Dinew, S., Kołodziej, S.: Pluripotential estimates on compact Hermitian manifolds. In: Advances in Geometric Analysis, Adv. Lect. Math. (ALM), vol. 21, pp. 69–86. Int. Press, Somerville, MA (2012)

[19]

EyssidieuxP, GuedjV, ZeriahiA. Singular Kähler–Einstein metrics. J. Amer. Math. Soc., 2009, 22(3): 607-639

[20]

GauduchonP. Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, 1977, 285(5): A387-A390

[21]

GrauertH, RiemenschneiderO. Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen. Invent. Math., 1970, 11: 263-292

[22]

GuedjV, LuCH. Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes. Algebr. Geom., 2022, 9(6): 688-713

[23]

GuedjV, LuCH. Quasi-plurisubharmonic envelopes 3: Solving Monge–Ampère equations on hermitian manifolds. J. Reine Angew. Math., 2023, 800: 259-298

[24]

GuedjV, LuCH, ZeriahiA. Plurisubharmonic envelopes and supersolutions. J. Differ. Geom., 2019, 113(2): 273-313

[25]

Guedj, V., Zeriahi, A.: Degenerate complex Monge–Ampère equations. EMS Tracts Math., vol. 26, European Mathematical Society (EMS), Zürich (2017)

[26]

Jia, J., Meng, S.: Moishezon manifolds with no nef and big classes. Proc. Edinb. Math. Soc. (2) 68(1), 198–204 (2025)

[27]

KołodziejS. The complex Monge–Ampère equation. Acta Math., 1998, 180(1): 69-117

[28]

Kołodziej, S., Nguyen, N.C.: Weak solutions to the complex Monge–Ampère equation on Hermitian manifolds. In: Analysis, Complex Geometry, and Mathematical Physics: in Honor of Duong H. Phong, Contemp. Math., vol. 644, pp. 141–158. American Mathematical Society, Providence, RI (2015)

[29]

KołodziejS, NguyenNC. Stability and regularity of solutions of the Monge–Ampère equation on Hermitian manifolds. Adv. Math., 2019, 346: 264-304

[30]

Lamari, A.: Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1), vii, x, 263–285 (1999)

[31]

SiuY-T. A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J. Differential Geom., 1984, 19(2): 431-452

[32]

TosattiV, WeinkoveB. The complex Monge–Ampère equation on compact Hermitian manifolds. J. Amer. Math. Soc., 2010, 23(4): 1187-1195

[33]

Witt NyströmD. Monotonicity of non-pluripolar Monge–Ampère masses. Indiana Univ. Math. J., 2019, 68(2): 579-591

[34]

YauST. On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Comm. Pure Appl. Math., 1978, 31(3): 339-411

[35]

ZeriahiA. Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions. Indiana Univ. Math. J., 2001, 50(1): 671-703

Funding

Université de Toulouse

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/