Volumes of Bott–Chern Classes
Sébastien Boucksom , Vincent Guedj , Chinh H. Lu
Peking Mathematical Journal ›› : 1 -43.
Volumes of Bott–Chern Classes
We study the volumes of transcendental and possibly non-closed Bott–Chern (1, 1)-classes on an arbitrary compact complex manifold X. We show that the latter belongs to the Fujiki class
Monge–Ampère volume / Bott–Chern classes / Hermitian manifolds / Fujiki classes
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Bedford, E., Taylor, B.A.: Fine topology, Šilov boundary, and . J. Funct. Anal. 72(2), 225–251 (1987) |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Cherrier, P.: Équations de Monge–Ampère sur les variétés hermitiennes compactes. Bull. Sci. Math. 111(4), 343–385 (1987) |
| [9] |
|
| [10] |
Dang, Q.-T.: Hermitian null loci. arXiv:2404.01126 (2024) |
| [11] |
|
| [12] |
|
| [13] |
Darvas, T., Reboulet, R., Witt Nyström, D., Xia, M., Zhang, K.: Transcendental Okounkov bodies. arXiv:2309.07584v2 (2025) (To appear in J. Diff. Geom.) |
| [14] |
Demailly, J.-P.: Une preuve simple de la conjecture de Grauert–Riemenschneider. In: Séminaire d’Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986, Lecture Notes in Math., vol. 1295, pp. 24–47. Springer, Berlin (1987) |
| [15] |
Demailly, J.-P.: Complex Analytic and Differential Geometry. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012) |
| [16] |
|
| [17] |
|
| [18] |
Dinew, S., Kołodziej, S.: Pluripotential estimates on compact Hermitian manifolds. In: Advances in Geometric Analysis, Adv. Lect. Math. (ALM), vol. 21, pp. 69–86. Int. Press, Somerville, MA (2012) |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
Guedj, V., Zeriahi, A.: Degenerate complex Monge–Ampère equations. EMS Tracts Math., vol. 26, European Mathematical Society (EMS), Zürich (2017) |
| [26] |
Jia, J., Meng, S.: Moishezon manifolds with no nef and big classes. Proc. Edinb. Math. Soc. (2) 68(1), 198–204 (2025) |
| [27] |
|
| [28] |
Kołodziej, S., Nguyen, N.C.: Weak solutions to the complex Monge–Ampère equation on Hermitian manifolds. In: Analysis, Complex Geometry, and Mathematical Physics: in Honor of Duong H. Phong, Contemp. Math., vol. 644, pp. 141–158. American Mathematical Society, Providence, RI (2015) |
| [29] |
|
| [30] |
Lamari, A.: Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1), vii, x, 263–285 (1999) |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
The Author(s)
/
| 〈 |
|
〉 |