The Exceptional Hall Numbers

Zheng Guo , Yong Hu , Cai-Heng Li

Peking Mathematical Journal ›› : 1 -10.

PDF
Peking Mathematical Journal ›› : 1 -10. DOI: 10.1007/s42543-025-00104-3
Original Article

The Exceptional Hall Numbers

Author information +
History +
PDF

Abstract

A positive integer m is called a Hall number if any finite group of order precisely divisible by m has a Hall subgroup of order m. We prove that, except for the obvious examples, the three integers 12, 24 and 60 are the only Hall numbers, solving a problem proposed by Jiping Zhang.

Keywords

Hall subgroups / Hall numbers / Finite groups

Cite this article

Download citation ▾
Zheng Guo, Yong Hu, Cai-Heng Li. The Exceptional Hall Numbers. Peking Mathematical Journal 1-10 DOI:10.1007/s42543-025-00104-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrayJN, HoltDF, Roney-DougalCMThe Maximal Subgroups of the Low-Dimensional Finite Classical Groups, 2013New YorkCambridge University Press.

[2]

Conway, J.H., Curtis, R.T., Noton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)

[3]

GorensteinD. The characterization of finite groups with dihedral Sylow 2-subgroups, I.. J. Algebra, 1965, 2185-151.

[4]

GorensteinDFinite Simple Groups: An Introduction to Their Classification, 1982New YorkPlenum Press.

[5]

RobinsonDJA Course in the Theory of Groups, 1982BerlinSpringer.

[6]

SerreJ-PA Course in Arithmetic, 1973BerlinSpringer.

Funding

National Natural Science Foundation of China(11931005)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/