PDF
Abstract
We give counterexamples to the evenness conjecture for homotopical equivariant cobordism. To this end, we prove a completion theorem for certain complex cobordism modules which does not involve higher derived functors. A key step in the proof is provided by a certain new relation between Mackey and Borel cohomology.
Keywords
Complex cobordism
/
Equivariant cobordism
/
Equivariant spectra
/
Completion theorem
/
Evenness conjecture
Cite this article
Download citation ▾
Sophie Kriz.
On Completion and the Evenness Conjecture for Homotopical Equivariant Cobordism.
Peking Mathematical Journal 1-24 DOI:10.1007/s42543-025-00103-4
| [1] |
ÁngelA, SampertonE, SegoviaC, UribeB. Oriented and unitary equivariant bordism of surfaces. Alg. Geom. Topol., 2024, 2431623-1654.
|
| [2] |
AtiyahMF, SegalGB. Equivariant K-theory and completion. J. Diff. Geom., 1969, 3: 1-18
|
| [3] |
Beilinson, A. A., Bernstein, J., Deligne, P.: Analyse et topologie sur les espaces singuliers, I. Astérisque 100, 172 pp. (1982)
|
| [4] |
Blumberg, A., Mandell, M.: K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K$$\end{document}-theoretic Tate–Poitou duality and the fiber of the cyclotomic trace. Invent. Math. 221(2), 397–419 (2020)
|
| [5] |
Boardman, J.M.: Conditionally convergent spectral sequences. In: Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, pp. 49–84. American Mathematical Society, Providence, RI (1999)
|
| [6] |
Bogomolov, F.A.: The Brauer group of quotient spaces of linear representations. Math. USSR Izv. 30(3), 455–485 (1988)
|
| [7] |
BröckerT, HookEC. Stable equivariant bordism. Math. Z., 1972, 129: 269-277.
|
| [8] |
Chen, Y., Ma, R.: Bogomolov multipliers of some groups of order p6\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p^6$$\end{document}. Commun. Algebra 49(1), 242–255 (2021)
|
| [9] |
Dress, A.W.M.: Contributions to the theory of induced representations. In: Algebraic K-Theory II, “Classical” Algebraic K-Theory, and Connections with Arithmetic (Seattle, WA, USA 1972), Lecture Notes in Math., vol. 342, pp. 181–240. Springer, Berlin (1973)
|
| [10] |
Dugger, D.: Multiplicative structures on homotopy spectral sequences II. arXiv:math/0305187 (2003)
|
| [11] |
Elmendorf, A.D.: Systems of fixed point sets. Trans. Am. Math. Soc. 277(1), 275–284 (1983)
|
| [12] |
GreenlessJPC. Some remarks on projective Mackey functors. J. Pure. Appl. Algebra, 1992, 81: 17-38.
|
| [13] |
Greenlees, J.P.C., May, J.P.: Generalized Tate cohomology. Mem. Am. Math. Soc. 113(543), vii+178 pp. (1995)
|
| [14] |
GreenleesJPC, MayJP. Localization and completion theorems for MU\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$M{\rm U}$$\end{document}-module spectra. Ann. Math. (2), 1997, 1463509-544.
|
| [15] |
HuP. The equivariant Lazard ring of primary cyclic groups. Trans. Amer. Math. Soc., 2025, 37842881-2921
|
| [16] |
Hu, P., Kriz, I.: Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence. Topology 40(2), 317–399 (2001)
|
| [17] |
James, R.: The groups of order p6\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p^6$$\end{document} (p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document} an odd prime). Math. Comput. 34(150), 613–637 (1980)
|
| [18] |
Kriz, I.: Morava K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K$$\end{document}-theory of classifying spaces: some calculations. Topology 36(6), 1247–1273 (1997)
|
| [19] |
Kriz, I., Lee, K.P.: Odd-degree elements in the Morava K(n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(n)$$\end{document} cohomology of finite groups. Topol. Appl. 103(3), 229–241 (2000)
|
| [20] |
Kriz, S.: Some remarks on Mackey functors. arXiv:2205.12192 (2022)
|
| [21] |
La VecchiaM. The completion and local cohomology theorems for complex cobordism for all compact Lie groups. Geom. Topol., 2024, 282627-639
|
| [22] |
Lewis, L.G.Jr., May, J.P., Steinberger, M., McClure, J.E.: Equivariant Stable Homotopy Theory. Lecture Notes in Math., vol. 1213. Springer, Berlin (1986)
|
| [23] |
LöfflerP. Bordismengruppen unitärer Torusmannigfaltigkeiten. Manuscr. Math., 1974, 12: 307-327.
|
| [24] |
May, J. P.: Equivariant Homotopy and Cohomology Theory. CBMS Regional Conf. Ser. in Math., vol. 91. American Mathematical Society, Providence, RI (1996)
|
| [25] |
Milnor, J.W.: On the cobordism ring Ω*\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega ^\ast $$\end{document} and a complex analogue, I. Am. J. Math. 82, 505–521 (1960)
|
| [26] |
NoetherE. Gleichungen mit vorgeschriebener Gruppe. Math. Ann., 1917, 78: 221-229.
|
| [27] |
NovikovSP. Some problems in the topology of manifolds connected with the theory of Thom spaces. Soviet Math. Dokl., 1960, 1: 717-720
|
| [28] |
NovikovSP. Homotopy properties of Thom complexes. Mat. Sb. (N.S.), 1962, 57: 407-442
|
| [29] |
Ravenel, D.: Morava K-theories and finite groups. In: Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, pp. 289–292. American Mathematical Society, Providence, RI (1982)
|
| [30] |
Rowlett, R.J.: Bordism of metacyclic group actions. Michigan Math. J. 27(2), 223–233 (1980)
|
| [31] |
SampertonE. Free actions on surfaces that do not extend to arbitrary actions on 3-manifolds. C. R. Math. Acad. Sci. Paris, 2022, 360: 161-167.
|
| [32] |
StricklandNP. Complex cobordism of involutions. Geom. Top., 2001, 5: 335-345.
|
| [33] |
tom DieckT. Bordism of G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G$$\end{document}-manifolds and integrality theorems. Topology, 1970, 94345-358.
|
| [34] |
tom Dieck, T.: Kobordismentheorie klassifizierender Räume und Transformationsgruppen. Math. Z. 126, 31–39 (1972)
|
| [35] |
Uribe, B.: The evenness conjecture in equivariant unitary bordism. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Vol. II, Invited Lectures, pp. 1217–1239 World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2018)
|
Funding
Division of Mathematical Sciences(2023350430)
RIGHTS & PERMISSIONS
Peking University