The Supersingular Locus of the Shimura Variety of $\textrm{GU}(2,n-2)$

Maria Fox , Naoki Imai

Peking Mathematical Journal ›› : 1 -40.

PDF
Peking Mathematical Journal ›› :1 -40. DOI: 10.1007/s42543-025-00102-5
Original Article
research-article

The Supersingular Locus of the Shimura Variety of $\textrm{GU}(2,n-2)$

Author information +
History +
PDF

Abstract

We study the supersingular locus of a reduction at an inert prime of the Shimura variety attached to $\textrm{GU}(2,n-2)$. More concretely, we realize irreducible components of the supersingular locus as closed subschemes of flag schemes over Deligne–Lusztig varieties defined by explicit conditions after taking perfections. Moreover, we study the intersections of the irreducible components. Stratifications of Deligne–Lusztig varieties defined using powers of Frobenius action appear in the description of the intersections.

Keywords

Shimura variety / Supersingular locus / Affine Deligne–Lusztig variety / Demazure resolution / Rapoport–Zink space / Unitary group / Primary 11G18 / Secondary 14M15

Cite this article

Download citation ▾
Maria Fox, Naoki Imai. The Supersingular Locus of the Shimura Variety of $\textrm{GU}(2,n-2)$. Peking Mathematical Journal 1-40 DOI:10.1007/s42543-025-00102-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017)

[2]

Bonnafé, C., Rouquier, R.: On the irreducibility of Deligne–Lusztig varieties. C. R. Math. Acad. Sci. Paris 343(1), 37–39 (2006)

[3]

Dold, A., Eckmann, B. (eds.): Schémas en groupes II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York (1970)

[4]

Dold, A., Eckmann, B. (eds.): Schémas en groupes III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York (1970)

[5]

Fox, M., Howard, B., Imai, N.: Rapoport-Zink spaces of type ${{\rm GU}} (2,n-2)$. arXiv:2308.03816 (2023)

[6]

GashiQR . On a conjecture of Kottwitz and Rapoport. Ann. Sci. Éc. Norm. Supér. (4), 2010, 43(6): 1017-1038.

[7]

GörtzU, HainesTJ, KottwitzRE, ReumanDC. Dimensions of some affine Deligne–Lusztig varieties. Ann. Sci. École Norm. Sup. (4), 2006, 39(3): 467-511.

[8]

GörtzU, HeX, NieS. Fully Hodge–Newton decomposable Shimura varieties. Peking Math. J., 2019, 2(2): 99-154.

[9]

HainesTJ. Equidimensionality of convolution morphisms and applications to saturation problems. Adv. Math., 2006, 207(1): 297-327.

[10]

HowardB, PappasG. On the supersingular locus of the ${\rm GU}(2,2)$ Shimura variety. Algebra Number Theory, 2014, 8(7): 1659-1699.

[11]

KisinM. Integral models for Shimura varieties of abelian type. J. Am. Math. Soc., 2010, 23(4): 967-1012.

[12]

KottwitzRE. Points on some Shimura varieties over finite fields. J. Am. Math. Soc., 1992, 5(2): 373-444.

[13]

KottwitzRE. Isocrystals with additional structure, II. Compos. Math., 1997, 109(3): 255-339.

[14]

KudlaS, RapoportM. Special cycles on unitary Shimura varieties I. Unramified local theory. Invent. Math., 2011, 184(3): 629-682.

[15]

MirkovićI, VilonenK. Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2), 2007, 166(1): 95-143.

[16]

Vollaard, I.: The supersingular locus of the Shimura variety for ${\rm GU}(1, s)$. Canad. J. Math. 62(3), 668–720 (2010)

[17]

Vollaard, I., Wedhorn, T.: The supersingular locus of the Shimura variety of ${\rm GU}(1, n-1)$ II. Invent. Math. 184(3), 591–627 (2011)

[18]

Xiao, L., Zhu, X.: Cycles on Shimura varieties via geometric Satake. arXiv:1707.05700 (2017)

[19]

ZhuX . Affine Grassmannians and the geometric Satake in mixed characteristic. Ann. Math. (2), 2017, 185(2): 403-492.

Funding

Division of Mathematical Sciences(2103150)

Japan Society for the Promotion of Science(22H00093)

The University of Tokyo

RIGHTS & PERMISSIONS

The Author(s)

PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

/