Non-Archimedean Techniques and Dynamical Degenerations

Charles Favre , Chen Gong

Peking Mathematical Journal ›› : 1 -63.

PDF
Peking Mathematical Journal ›› : 1 -63. DOI: 10.1007/s42543-025-00100-7
Original Article

Non-Archimedean Techniques and Dynamical Degenerations

Author information +
History +
PDF

Abstract

We develop non-Archimedean techniques to analyze the degeneration of a sequence of rational maps of the complex projective line. We provide an alternative to Luo’s method which was based on ultra-limits of the hyperbolic 3-space. We build hybrid spaces using Berkovich theory which enable us to prove the convergence of equilibrium measures, and to determine the asymptotics of Lyapunov exponents.

Keywords

Degeneration of rational maps / Non-standard analysis / Minimal resultant

Cite this article

Download citation ▾
Charles Favre, Chen Gong. Non-Archimedean Techniques and Dynamical Degenerations. Peking Mathematical Journal 1-63 DOI:10.1007/s42543-025-00100-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line. Math. Surv. Monogr., vol. 159. American Mathematical Society, Providence, RI (2010)

[2]

Beardon, A.F.: The Geometry of Discrete Groups. Grad. Texts Math., vol. 91. Springer-Verlag, New York (1983)

[3]

Benedetto, R.L.: Dynamics in One Non-Archimedean Variable. Grad. Stud. Math., vol. 198. American Mathematical Society, Providence, RI (2019)

[4]

Berkovich, V.G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Math. Surv. Monogr., vol. 33. American Mathematical Society, Providence, RI (1990)

[5]

Berkovich, V.G.: A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures. In: Algebra, Arithmetic, and Geometry, In honor of Yu. I. Manin, Prog. Math., vol. I, pp. 49–67. Birkhäuser, Boston, MA (2009)

[6]

Berteloot, F.: Bifurcation currents in holomorphic families of rational maps. In: Pluripotential Theory. Lect. Notes Math., vol. 2075, pp. 1–93. Springer, Heiderberg (2013)

[7]

Bosch, S., Güntzer, U., Remmert, R.: Non-archimedean Analysis, A Systematic Approach to Rigid Analytic Geometry. Grundlehren Math. Wiss., vol. 261. Springer-Verlag, Berlin (1984)

[8]

BoucksomS, FavreC, JonssonM. Solution to a non-Archimedean Monge–Ampère equation. J. Am. Math. Soc., 2015, 283617-667.

[9]

BoucksomS, FavreC, JonssonM. Singular semipositive metrics in non-Archimedean geometry. J. Algebr. Geom., 2016, 25177-139.

[10]

BoucksomS, GublerW, MartinF. Differentiability of relative volumes over an arbitrary non-Archimedean field. Int. Math. Res. Not., 2022, 202286214-6242.

[11]

BoucksomS, JonssonM. Tropical and non-Archimedean limits of degenerating families of volume forms. J. Éc. Polytech. Math., 2017, 4: 87-139.

[12]

Chambert-Loir, A., Ducros, A.: Formes différentielles réelles et courants sur les espaces de Berkovich. arXiv:1204.6277 (2012)

[13]

Comfort , W.W., Negrepontis, S.: The Theory of Ultrafilters. Grundlehren Math. Wiss., vol. 211. Springer-Verlag, New York (1974)

[14]

Dang, N.-B., Mehmeti, V.: Variation of the Hausdorff dimension and degenerations of Schottky groups. arXiv:2401.06107 (2024)

[15]

De Marco, L., Faber, X.: Degenerations of complex dynamical systems. Forum Math. Sigma 2, Paper No. e6, 36 pp.

[16]

Demailly, J.-P.: Complex Analytic and Differential Geometry. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012)

[17]

Demailly, J.-P.: On the Ohsawa–Takegoshi–Manivel L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} extension theorem. In: Complex Analysis and Geometry (Paris, 1997), Progr. Math., vol. 188, pp. 47–82. Birkhäuser, Basel (2000)

[18]

DeMarcoL. Iteration at the boundary of the space of rational maps. Duke Math. J., 2005, 1301169-197.

[19]

DeMarcoL. The moduli space of quadratic rational maps. J. Am. Math. Soc., 2007, 202321-355.

[20]

DeMarco, L., Faber, X.: Degenerations of complex dynamical systems II: analytic and algebraic stability. Math. Ann. 365(3–4), 1669–1699 (2016)

[21]

DeMarcoL, KriegerH, YeH. Uniform Manin–Mumford for a family of genus 2 curves. Ann. Math. (2), 2020, 1913949-1001.

[22]

DeMarcoLG, McMullenCT. Trees and the dynamics of polynomials. Ann. Sci. Éc. Norm. Supér. (4), 2008, 413337-383.

[23]

Donaldson, S.: Riemann Surfaces. Oxford Grad. Texts Math, vol. 22. Oxford University Press, Oxford (2011)

[24]

DucrosA, HrushovskiE, LoeserF. Non-Archimedean integrals as limits of complex integrals. Duke Math. J., 2023, 1722313-386.

[25]

DujardinR, FavreC. Degenerations of SL(2,C)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${{\rm SL}} (2, {\mathbb{C} })$$\end{document} representations and Lyapunov exponents. Ann. Henri Lebesgue, 2019, 2: 515-565.

[26]

EpsteinAL. Bounded hyperbolic components of quadratic rational maps. Ergod. Theory Dyn. Syst., 2000, 203727-748.

[27]

FavreC. Degeneration of endomorphisms of the complex projective space in the hybrid space. J. Inst. Math. Jussieu, 2020, 1941141-1183.

[28]

Favre, C., Gauthier, T.: The Arithmetic of Polynomial Dynamical Pairs. Ann. Math. Stud., vol. 214. Princeton University Press, Princeton, NJ (2022)

[29]

Favre, C., Jonsson, M.: The Valuative Tree. Lect. Notes Math., vol. 1853. Springer, Berlin (2004)

[30]

FavreC, KiwiJ, TruccoE. A non-Archimedean Montel’s theorem. Compos. Math., 2012, 1483966-990.

[31]

FavreC, Rivera-LetelierJ. Quantitative uniform distribution of points of small height on the projective line (in French). Math. Ann., 2006, 3352311-361.

[32]

FavreC, Rivera-LetelierJ. Ergodic theory of rational maps over an ultrametric field (in French). Proc. Lond. Math. Soc. (3), 2010, 1001116-154.

[33]

GauthierT, OkuyamaY, VignyG. Approximation of non-Archimedean Lyapunov exponents and applications over global fields. Trans. Am. Math. Soc., 2020, 373128963-9011.

[34]

GrauertH, RemmertR. Plurisubharmonische Funktionen in komplexen Räumen. Math. Z., 1956, 65: 175-194.

[35]

GublerW. Local heights of subvarieties over non-Archimedean fields. J. Reine Angew. Math., 1998, 498: 61-113.

[36]

Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, 3rd printing. Grad. Texts Math., vol. 25. Springer-Verlag, New York (1975)

[37]

Irokawa, R.: Hybrid dynamics of Hénon mappings. arXiv:2212.10851v2 (2023)

[38]

Irokawa, R.: Hybrid dynamics of hyperbolic automorphisms of K3 surfaces. arXiv:2405.12517 (2024)

[39]

JacobsK. Hyperbolic equivariants of rational maps. Int. Math. Res. Not., 2023, 202311-53.

[40]

Ji, Z., Xie, J.: Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics. Forum Math. Pi 11, Paper No. e11, 37 pp. (2023)

[41]

Jonsson, M.: Dynamics on Berkovich spaces in low dimensions. In: Berkovich Spaces and Applications, Lect. Notes Math., vol. 2119, pp. 205–366. Springer, Cham (2015)

[42]

Kapovich, M.: Hyperbolic manifolds and discrete groups. Reprint of the 2001 Edition. Mod. Birkhäuser Class. Birkhäuser, Boston, MA (2009)

[43]

KiwiJ. Puiseux series polynomial dynamics and iteration of complex cubic polynomials. Ann. Inst. Fourier, 2006, 5651337-1404.

[44]

Kiwi, J.: Puiseux series dynamics of quadratic rational maps. Isr. J. Math. 201(2), 631–700 (2014)

[45]

KiwiJ. Rescaling limits of complex rational maps. Duke Math. J., 2015, 16471437-1470.

[46]

KiwiJ, NieH. Indeterminacy loci of iterate maps in moduli space. Indiana Univ. Math. J., 2023, 723969-1026.

[47]

Lemanissier, T., Poineau, J.: Espaces de Berkovich globaux. Catégorie, topologie, cohomologie. Progr. Math., vol. 353. Birkhäuser, Cham (2024)

[48]

LevyA. The space of morphisms on projective space. Acta Arith., 2011, 146113-31.

[49]

Lightstone, A.H., Robinson, A.: Non-Archimedean Fields and Asymptotic Expansions, North-Holland Math. Libr., vol. 13. North-Holland, Amsterdam (1975)

[50]

LuoY . Limits of rational maps, R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{R} }$$\end{document}-trees and barycentric extension. Adv. Math., 2021, 393: 108075, 46.

[51]

LuoY. Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces. Duke Math. J., 2022, 171142943-3001.

[52]

Maculan, M.: Diophantine Applications of Geometric Invariant Theory. Mém. Soc. Math. Fr. (N.S.) 152, 149 pp. (2017)

[53]

MiasnikovN, StoutB, WilliamsP. Automorphism loci for the moduli space of rational maps. Acta Arith., 2017, 1803267-296.

[54]

MilnorJ . Geometry and dynamics of quadratic rational maps (with an Appendix by J. Milnor and Tan Lei). Exp. Math., 1993, 2137-83.

[55]

Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Ann. Math. Stud., vol. 160. Princeton University Press, Princeton, NJ (2006)

[56]

Morgan, J.W., Shalen, P.B.: An introduction to compactifying spaces of hyperbolic structures by actions on trees. In: Geometry and Topology (College Park, Md., 1983–1984), Lect. Note Math., vol. 1167, pp. 228–240

[57]

Mumford, D., Fogarty, J.: Geometric Invariant Theory, 2nd edn. Ergeb. Math. Grenzgeb., vol. 34. Springer, Berlin (1982)

[58]

NieH, PilgrimKM. Bounded hyperbolic components of bicritical rational maps. J. Mod. Dyn., 2022, 18: 533-553.

[59]

Novacoski, J: Valuations centered at a two-dimensional regular local ring: infima and topologies. arXiv:1205.5625 (2012)

[60]

OkuyamaY. Quantitative approximations of the Lyapunov exponent of a rational function over valued fields. Math. Z., 2015, 2803–4691-706.

[61]

Petersen, C.L.: Conformally natural extensions revisited. arXiv:1102.1470 (2011)

[62]

Poineau, J.: La droite de Berkovich sur Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\bf Z}$$\end{document}, Astérisque 334, viii+xii+284 pp. (2010)

[63]

PoineauJ. Berkovich spaces are angelic (in French). Bull. Soc. Math. Fr., 2013, 1412267-297.

[64]

Poineau, J.: Berkovich spaces over Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{Z}}$$\end{document}: local study (in French). Invent. Math. 194(3), 535–590 (2013)

[65]

Poineau, J.: Dynamique analytique sur Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{Z}$$\end{document}, I: Mesures d’équilibre sur une droite projective relative. arXiv:2201.08480v4 (2024)

[66]

Poineau, J.: Dynamique analytique sur Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{Z}$$\end{document}, II: Écart uniforme entre Lattès et conjecture de Bogomolov–Fu–Tschinkel. arXiv:2207.01574v3 (2024)

[67]

Rudin, W.: Real and Complex Analysis, 2nd edn. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1974)

[68]

RumelyR. The minimal resultant locus. Acta Arith., 2015, 1693251-290.

[69]

SilvermanJH. The space of rational maps on P1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\textbf{P}}^1$$\end{document}. Duke Math. J., 1998, 94141-77.

[70]

Silverman, J.H.: The Arithmetic of Dynamical Systems. Grad. Texts Math., Vol. 241. Springer, New York (2007)

[71]

StevensonM. A non-Archimedean Ohsawa–Takegoshi extension theorem. Math. Z., 2019, 2911–2279-302.

[72]

Szpiro, L., Tepper, M., Williams, P.: Resultant and conductor of geometrically semi-stable self maps of the projective line over a number field or function field. Publ. Mat. 58(2), 295–329 (2014)

[73]

Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archim édienne, Applications à la théorie d’Arakelov. Ph.D. thesis, Université Rennes 1 (2005)

Funding

China Sponsorship Council(SC-202108070159)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

611

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/