Non-Archimedean Techniques and Dynamical Degenerations
Charles Favre , Chen Gong
Peking Mathematical Journal ›› : 1 -63.
Non-Archimedean Techniques and Dynamical Degenerations
We develop non-Archimedean techniques to analyze the degeneration of a sequence of rational maps of the complex projective line. We provide an alternative to Luo’s method which was based on ultra-limits of the hyperbolic 3-space. We build hybrid spaces using Berkovich theory which enable us to prove the convergence of equilibrium measures, and to determine the asymptotics of Lyapunov exponents.
Degeneration of rational maps / Non-standard analysis / Minimal resultant
| [1] |
Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line. Math. Surv. Monogr., vol. 159. American Mathematical Society, Providence, RI (2010) |
| [2] |
Beardon, A.F.: The Geometry of Discrete Groups. Grad. Texts Math., vol. 91. Springer-Verlag, New York (1983) |
| [3] |
Benedetto, R.L.: Dynamics in One Non-Archimedean Variable. Grad. Stud. Math., vol. 198. American Mathematical Society, Providence, RI (2019) |
| [4] |
Berkovich, V.G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Math. Surv. Monogr., vol. 33. American Mathematical Society, Providence, RI (1990) |
| [5] |
Berkovich, V.G.: A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures. In: Algebra, Arithmetic, and Geometry, In honor of Yu. I. Manin, Prog. Math., vol. I, pp. 49–67. Birkhäuser, Boston, MA (2009) |
| [6] |
Berteloot, F.: Bifurcation currents in holomorphic families of rational maps. In: Pluripotential Theory. Lect. Notes Math., vol. 2075, pp. 1–93. Springer, Heiderberg (2013) |
| [7] |
Bosch, S., Güntzer, U., Remmert, R.: Non-archimedean Analysis, A Systematic Approach to Rigid Analytic Geometry. Grundlehren Math. Wiss., vol. 261. Springer-Verlag, Berlin (1984) |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Chambert-Loir, A., Ducros, A.: Formes différentielles réelles et courants sur les espaces de Berkovich. arXiv:1204.6277 (2012) |
| [13] |
Comfort , W.W., Negrepontis, S.: The Theory of Ultrafilters. Grundlehren Math. Wiss., vol. 211. Springer-Verlag, New York (1974) |
| [14] |
Dang, N.-B., Mehmeti, V.: Variation of the Hausdorff dimension and degenerations of Schottky groups. arXiv:2401.06107 (2024) |
| [15] |
De Marco, L., Faber, X.: Degenerations of complex dynamical systems. Forum Math. Sigma 2, Paper No. e6, 36 pp. |
| [16] |
Demailly, J.-P.: Complex Analytic and Differential Geometry. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012) |
| [17] |
Demailly, J.-P.: On the Ohsawa–Takegoshi–Manivel L2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document} extension theorem. In: Complex Analysis and Geometry (Paris, 1997), Progr. Math., vol. 188, pp. 47–82. Birkhäuser, Basel (2000) |
| [18] |
|
| [19] |
|
| [20] |
DeMarco, L., Faber, X.: Degenerations of complex dynamical systems II: analytic and algebraic stability. Math. Ann. 365(3–4), 1669–1699 (2016) |
| [21] |
|
| [22] |
|
| [23] |
Donaldson, S.: Riemann Surfaces. Oxford Grad. Texts Math, vol. 22. Oxford University Press, Oxford (2011) |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Favre, C., Gauthier, T.: The Arithmetic of Polynomial Dynamical Pairs. Ann. Math. Stud., vol. 214. Princeton University Press, Princeton, NJ (2022) |
| [29] |
Favre, C., Jonsson, M.: The Valuative Tree. Lect. Notes Math., vol. 1853. Springer, Berlin (2004) |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, 3rd printing. Grad. Texts Math., vol. 25. Springer-Verlag, New York (1975) |
| [37] |
Irokawa, R.: Hybrid dynamics of Hénon mappings. arXiv:2212.10851v2 (2023) |
| [38] |
Irokawa, R.: Hybrid dynamics of hyperbolic automorphisms of K3 surfaces. arXiv:2405.12517 (2024) |
| [39] |
|
| [40] |
Ji, Z., Xie, J.: Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics. Forum Math. Pi 11, Paper No. e11, 37 pp. (2023) |
| [41] |
Jonsson, M.: Dynamics on Berkovich spaces in low dimensions. In: Berkovich Spaces and Applications, Lect. Notes Math., vol. 2119, pp. 205–366. Springer, Cham (2015) |
| [42] |
Kapovich, M.: Hyperbolic manifolds and discrete groups. Reprint of the 2001 Edition. Mod. Birkhäuser Class. Birkhäuser, Boston, MA (2009) |
| [43] |
|
| [44] |
Kiwi, J.: Puiseux series dynamics of quadratic rational maps. Isr. J. Math. 201(2), 631–700 (2014) |
| [45] |
|
| [46] |
|
| [47] |
Lemanissier, T., Poineau, J.: Espaces de Berkovich globaux. Catégorie, topologie, cohomologie. Progr. Math., vol. 353. Birkhäuser, Cham (2024) |
| [48] |
|
| [49] |
Lightstone, A.H., Robinson, A.: Non-Archimedean Fields and Asymptotic Expansions, North-Holland Math. Libr., vol. 13. North-Holland, Amsterdam (1975) |
| [50] |
|
| [51] |
|
| [52] |
Maculan, M.: Diophantine Applications of Geometric Invariant Theory. Mém. Soc. Math. Fr. (N.S.) 152, 149 pp. (2017) |
| [53] |
|
| [54] |
|
| [55] |
Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Ann. Math. Stud., vol. 160. Princeton University Press, Princeton, NJ (2006) |
| [56] |
Morgan, J.W., Shalen, P.B.: An introduction to compactifying spaces of hyperbolic structures by actions on trees. In: Geometry and Topology (College Park, Md., 1983–1984), Lect. Note Math., vol. 1167, pp. 228–240 |
| [57] |
Mumford, D., Fogarty, J.: Geometric Invariant Theory, 2nd edn. Ergeb. Math. Grenzgeb., vol. 34. Springer, Berlin (1982) |
| [58] |
|
| [59] |
Novacoski, J: Valuations centered at a two-dimensional regular local ring: infima and topologies. arXiv:1205.5625 (2012) |
| [60] |
|
| [61] |
Petersen, C.L.: Conformally natural extensions revisited. arXiv:1102.1470 (2011) |
| [62] |
Poineau, J.: La droite de Berkovich sur Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\bf Z}$$\end{document}, Astérisque 334, viii+xii+284 pp. (2010) |
| [63] |
|
| [64] |
Poineau, J.: Berkovich spaces over Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{Z}}$$\end{document}: local study (in French). Invent. Math. 194(3), 535–590 (2013) |
| [65] |
Poineau, J.: Dynamique analytique sur Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{Z}$$\end{document}, I: Mesures d’équilibre sur une droite projective relative. arXiv:2201.08480v4 (2024) |
| [66] |
Poineau, J.: Dynamique analytique sur Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{Z}$$\end{document}, II: Écart uniforme entre Lattès et conjecture de Bogomolov–Fu–Tschinkel. arXiv:2207.01574v3 (2024) |
| [67] |
Rudin, W.: Real and Complex Analysis, 2nd edn. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1974) |
| [68] |
|
| [69] |
|
| [70] |
Silverman, J.H.: The Arithmetic of Dynamical Systems. Grad. Texts Math., Vol. 241. Springer, New York (2007) |
| [71] |
|
| [72] |
Szpiro, L., Tepper, M., Williams, P.: Resultant and conductor of geometrically semi-stable self maps of the projective line over a number field or function field. Publ. Mat. 58(2), 295–329 (2014) |
| [73] |
Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archim édienne, Applications à la théorie d’Arakelov. Ph.D. thesis, Université Rennes 1 (2005) |
Peking University
/
| 〈 |
|
〉 |