Classical Stable Homotopy Groups of Spheres via $\mathbb {F}_2$-Synthetic Methods

Robert Burklund , Daniel C. Isaksen , Zhouli Xu

Peking Mathematical Journal ›› : 1 -23.

PDF
Peking Mathematical Journal ›› : 1 -23. DOI: 10.1007/s42543-025-00098-y
Original Article

Classical Stable Homotopy Groups of Spheres via $\mathbb {F}_2$-Synthetic Methods

Author information +
History +
PDF

Abstract

We study the $\mathbb {F}_2$-synthetic Adams spectral sequence. We obtain new computational information about $\mathbb {C}$-motivic and classical stable homotopy groups.

Keywords

Stable homotopy group / Synthetic homotopy theory / Adams spectral sequence

Cite this article

Download citation ▾
Robert Burklund, Daniel C. Isaksen, Zhouli Xu. Classical Stable Homotopy Groups of Spheres via $\mathbb {F}_2$-Synthetic Methods. Peking Mathematical Journal 1-23 DOI:10.1007/s42543-025-00098-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. of Math. (2) 72, 20–104 (1960)

[2]

Baer, J.F., Johnson, M., Marek, P.: Stable comodule deformations and the synthetic Adams–Novikov spectral sequence. arXiv:2402.14274 (2024)

[3]

Barratt, M.G., Jones, J.D.S., Mahowald, M.E.: Relations amongst Toda brackets and the Kervaire invariant in dimension 62. J. London Math. Soc. (2) 30(3), 533–550 (1984)

[4]

Belmont, E., Kong, H.J.: A Toda bracket convergence theorem for multiplicative spectral sequences. arXiv:2112.08689 (2021)

[5]

Burklund R An extension in the Adams spectral sequence in dimension 54. Bull. Lond. Math. Soc., 2021, 53(2): 404-407.

[6]

Burklund R, Hahn J, Senger A On the boundaries of highly connected, almost closed manifolds. Acta Math., 2023, 231(2): 205-344.

[7]

Burklund R, Xu Z The Adams differentials on the classes $\text{h}{^{3}_{j}}$. Invent. Math., 2025, 239(1): 1-77.

[8]

Gheorghe B, Isaksen DC, Krause A, Ricka N $\mathbb{C}$-motivic modular forms. J. Eur. Math. Soc. (JEMS), 2022, 24(10): 3597-3628.

[9]

Gheorghe B, Wang G, Xu Z The special fiber of the motivic deformation of the stable homotopy category is algebraic. Acta Math., 2021, 226(2): 319-407.

[10]

Hopkins MJ , Lin J, Shi XD, Xu Z Intersection forms of spin 4-manifolds and the Pin(2)-equivariant Mahowald invariant. Comm. Am. Math. Soc., 2022, 2, 22-132.

[11]

Isaksen, D.C.: Stable stems. Mem. Am. Math. Soc. 262(1269), viii+159 pp. (2019)

[12]

Isaksen, D.C., Wang, G., Xu, Z.: Classical and $\mathbb{C}$-motivic Adams charts. https://cpb-us-e1.wpmucdn.com/s.wayne.edu/dist/0/60/files/2020/01/Adamscharts.pdf (2020)

[13]

Isaksen DC , Wang G, Xu Z Stable homotopy groups of spheres. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(40): 24757-24763.

[14]

Isaksen DC, Wang G, Xu Z Stable homotopy groups of spheres: from dimension 0 to 90. Publ. Math. Inst. Hautes Études Sci., 2023, 137, 107-243.

[15]

Lin, W., Wang, G., Xu, Z.: Machine proofs for Adams differentials and extension problems among CW spectra. arXiv:2412.10876 (2024)

[16]

Marek, P.: H$\mathbb{F}_2$-synthetic homotopy groups of topological modular forms. arXiv:2202.11305 (2022)

[17]

Moss RMF Secondary compositions and the Adams spectral sequence. Math. Z., 1970, 115, 283-310.

[18]

Pstragowski P Synthetic spectra and the cellular motivic category. Invent. Math., 2023, 232(2): 553-681.

[19]

Serre J-P Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. (2), 1953, 58, 258-294.

[20]

Wang G, Xu Z The triviality of the 61-stem in the stable homotopy groups of spheres. Ann. of Math. (2), 2017, 186(2): 501-580.

[21]

Xu Z The strong Kervaire invariant problem in dimension 62. Geom. Topol., 2016, 20(3): 1611-1624.

Funding

National Science Foundation(DMS-2202992)

Villum Fonden(Young Investigator Program)

Danish National Research Foundation(Copenhagen center for Geometry and Topology (DNRF151))

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/