Classical Stable Homotopy Groups of Spheres via $\mathbb {F}_2$-Synthetic Methods
Robert Burklund, Daniel C. Isaksen, Zhouli Xu
Classical Stable Homotopy Groups of Spheres via $\mathbb {F}_2$-Synthetic Methods
We study the $\mathbb {F}_2$-synthetic Adams spectral sequence. We obtain new computational information about $\mathbb {C}$-motivic and classical stable homotopy groups.
Stable homotopy group / Synthetic homotopy theory / Adams spectral sequence
[1.] |
Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. of Math. (2) 72, 20–104 (1960)
|
[2.] |
Baer, J.F., Johnson, M., Marek, P.: Stable comodule deformations and the synthetic Adams–Novikov spectral sequence. arXiv:2402.14274 (2024)
|
[3.] |
Barratt, M.G., Jones, J.D.S., Mahowald, M.E.: Relations amongst Toda brackets and the Kervaire invariant in dimension 62. J. London Math. Soc. (2) 30(3), 533–550 (1984)
|
[4.] |
Belmont, E., Kong, H.J.: A Toda bracket convergence theorem for multiplicative spectral sequences. arXiv:2112.08689 (2021)
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
Isaksen, D.C.: Stable stems. Mem. Am. Math. Soc. 262(1269), viii+159 pp. (2019)
|
[12.] |
Isaksen, D.C., Wang, G., Xu, Z.: Classical and $\mathbb{C}$-motivic Adams charts. https://cpb-us-e1.wpmucdn.com/s.wayne.edu/dist/0/60/files/2020/01/Adamscharts.pdf (2020)
|
[13.] |
|
[14.] |
|
[15.] |
Lin, W., Wang, G., Xu, Z.: Machine proofs for Adams differentials and extension problems among CW spectra. arXiv:2412.10876 (2024)
|
[16.] |
Marek, P.: H$\mathbb{F}_2$-synthetic homotopy groups of topological modular forms. arXiv:2202.11305 (2022)
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
/
〈 |
|
〉 |