Improved $C^{1,1}$ Regularity for Multiple Membranes Problem
Zhichao Wang , Xin Zhou
Peking Mathematical Journal ›› : 1 -57.
Improved $C^{1,1}$ Regularity for Multiple Membranes Problem
We prove the $C^{1,1}$-regularity for stationary $C^{1,\alpha }$ ($\alpha \in (0,1)$) solutions to the multiple membrane problem. This regularity estimate was essentially used in our recent work on Yau’s four minimal spheres conjecture [arXiv:2305.08755].
Multiple membranes / Optimal regularity / Prescribed mean curvature / Multiplicity / Elliptic operators
| [1] |
|
| [2] |
|
| [3] |
Caffarelli, L., De Silva, D., Savin, O.: The two membranes problem for different operators, Ann.Inst. H. Poincaré C Anal. Non Linéaire 34(4), 899–932 (2017) |
| [4] |
Caffarelli, L., Duque, L., Vivas, H.: The two membranes problem for fully nonlinear operators. Discrete Contin. Dyn. Syst. 38(12), 6015–6027 (2018) |
| [5] |
Chipot, M., Vergara-Caffarelli, G.: The N-membranes problem. Appl. Math. Optim. 13(3), 231–249 (1985) |
| [6] |
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001) |
| [7] |
Han, Q., Lin, F.H.: Elliptic Partial Differential Equations, 2nd edn. Courant Lecture Notes in Mathematics, vol. 1. American Mathematical Society, New York (2011) |
| [8] |
Jost, J.: Partial Differential Equations, 3rd edn. Graduate Texts in Mathematics, vol. 214. Springer, New York (2013) |
| [9] |
Lin, F.H.: Regularity for a class of parametric obstacle problems (integrand, integral current, prescribed mean curvature, minimal surface system). Ph.D. Thesis, University of Minnesota (1985) |
| [10] |
Sarnataro, L., Stryker, D.: Optimal regularity for minimizers of the prescribed mean curvature functional over isotopies. arXiv:2304.02722 (2023) |
| [11] |
Savin, O., Yu, H.: On the multiple membranes problem. J. Funct. Anal. 277(6), 1581–1602 (2019) |
| [12] |
|
| [13] |
Simon, L.: Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra (1983) |
| [14] |
Vergara-Caffarelli, G.: Regolarità di un problema di disequazioni variazionali relativo a due membrane, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 50(6), 659–662 (1971) |
| [15] |
|
| [16] |
Wang, Z.C., Zhou, X.: Existence of four minimal spheres in $S^3$ with a bumpy metric. arXiv:2305.08755 (2023) |
| [17] |
|
| [18] |
Zhou, X., Zhu, J.J.: Existence of hypersurfaces with prescribed mean curvature I—generic minmax. Camb. J. Math. 8(2), 311–362 (2020) |
Peking University
/
| 〈 |
|
〉 |