Improved $C^{1,1}$ Regularity for Multiple Membranes Problem

Zhichao Wang , Xin Zhou

Peking Mathematical Journal ›› : 1 -57.

PDF
Peking Mathematical Journal ›› : 1 -57. DOI: 10.1007/s42543-025-00097-z
Original Article

Improved $C^{1,1}$ Regularity for Multiple Membranes Problem

Author information +
History +
PDF

Abstract

We prove the $C^{1,1}$-regularity for stationary $C^{1,\alpha }$ ($\alpha \in (0,1)$) solutions to the multiple membrane problem. This regularity estimate was essentially used in our recent work on Yau’s four minimal spheres conjecture [arXiv:2305.08755].

Keywords

Multiple membranes / Optimal regularity / Prescribed mean curvature / Multiplicity / Elliptic operators

Cite this article

Download citation ▾
Zhichao Wang, Xin Zhou. Improved $C^{1,1}$ Regularity for Multiple Membranes Problem. Peking Mathematical Journal 1-57 DOI:10.1007/s42543-025-00097-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azevedo A, Rodrigues J-F, Santos L. The N-membranes problem for quasilinear degenerate systems. Interfaces Free Bound., 2005, 7(3):319-337

[2]

Caffarelli L. The obstacle problem revisited. J. Fourier Anal. Appl., 1998, 4(4–5):383-402

[3]

Caffarelli, L., De Silva, D., Savin, O.: The two membranes problem for different operators, Ann.Inst. H. Poincaré C Anal. Non Linéaire 34(4), 899–932 (2017)

[4]

Caffarelli, L., Duque, L., Vivas, H.: The two membranes problem for fully nonlinear operators. Discrete Contin. Dyn. Syst. 38(12), 6015–6027 (2018)

[5]

Chipot, M., Vergara-Caffarelli, G.: The N-membranes problem. Appl. Math. Optim. 13(3), 231–249 (1985)

[6]

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001)

[7]

Han, Q., Lin, F.H.: Elliptic Partial Differential Equations, 2nd edn. Courant Lecture Notes in Mathematics, vol. 1. American Mathematical Society, New York (2011)

[8]

Jost, J.: Partial Differential Equations, 3rd edn. Graduate Texts in Mathematics, vol. 214. Springer, New York (2013)

[9]

Lin, F.H.: Regularity for a class of parametric obstacle problems (integrand, integral current, prescribed mean curvature, minimal surface system). Ph.D. Thesis, University of Minnesota (1985)

[10]

Sarnataro, L., Stryker, D.: Optimal regularity for minimizers of the prescribed mean curvature functional over isotopies. arXiv:2304.02722 (2023)

[11]

Savin, O., Yu, H.: On the multiple membranes problem. J. Funct. Anal. 277(6), 1581–1602 (2019)

[12]

Silvestre L. The two membranes problem. Comm. Partial Differential Equations, 2005, 30(1–3):245-257

[13]

Simon, L.: Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra (1983)

[14]

Vergara-Caffarelli, G.: Regolarità di un problema di disequazioni variazionali relativo a due membrane, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 50(6), 659–662 (1971)

[15]

Vergara-Caffarelli G. Variational inequalities for two surfaces of constant mean curvature. Arch. Rational Mech. Anal., 1974, 56: 334-347

[16]

Wang, Z.C., Zhou, X.: Existence of four minimal spheres in $S^3$ with a bumpy metric. arXiv:2305.08755 (2023)

[17]

White B . Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals. Invent. Math., 1987, 88(2):243-256

[18]

Zhou, X., Zhu, J.J.: Existence of hypersurfaces with prescribed mean curvature I—generic minmax. Camb. J. Math. 8(2), 311–362 (2020)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/