Uniform Estimates of the Cauchy–Riemann Equation and Kerzman’s Question
Yuan Yuan
Uniform Estimates of the Cauchy–Riemann Equation and Kerzman’s Question
We answer a question raised by Kerzman in 1971. More precisely, we show that the canonical solution of the
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
Chen, L., McNeal, J.D.: Product domains, Multi-Cauchy transforms, and the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} equation. Adv. Math. 360, 106930, 42 pp. (2020)
|
[5.] |
Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society, Providence, RI; International Press, Boston, MA (2001)
|
[6.] |
|
[7.] |
Dong, X., Pan, Y., Zhang, Y.: Uniform estimates for the canonical solution to the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-equation on product domains. arXiv:2006.14484 (2020)
|
[8.] |
Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (2010)
|
[9.] |
Fassina, M., Pan, Y.: Supnorm estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on product domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n$$\end{document}. Acta Math. Sin. (Engl. Ser) 40(10), 2307–2323 (2024)
|
[10.] |
|
[11.] |
Folland, G.B., Kohn, J.J.: The Neumann Problem for the Cauchy–Riemann Complex, Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton, NJ.; University of Tokyo Press, Tokyo (1972)
|
[12.] |
|
[13.] |
|
[14.] |
Fornæss, J.E., Sibony, N.: Smooth pseudoconvex domains in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} for which the corona theorem and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} fail. In: Complex Analysis and Geometry, pp. 209–222, Univ. Ser. Math., Plenum, New York (1993)
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North-Holland Mathematical Library, vol. 7. North-Holland Publishing Co., Amsterdam (1990)
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
Ohsawa, T.: L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Approaches in Several Complex Variables—Towards the Oka–Cartan Theory with Precise Bounds, 2nd edn. Springer Monographs in Mathematics. Springer, Tokyo (2018)
|
[26.] |
|
[27.] |
Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics, vol. 108. Springer-Verlag, New York (1986)
|
[28.] |
|
[29.] |
|
[30.] |
Straube, E.J.: Lectures on the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Sobolev Theory of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann Problem, ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2010)
|
[31.] |
Yuan, Y.: Uniform estimates of the Cauchy–Riemann equation on product domains, arXiv:2207.02592 (2022)
|
/
〈 |
|
〉 |