Uniform Estimates of the Cauchy–Riemann Equation and Kerzman’s Question

Yuan Yuan

Peking Mathematical Journal ›› 2025

Peking Mathematical Journal ›› 2025 DOI: 10.1007/s42543-025-00096-0
Original Article

Uniform Estimates of the Cauchy–Riemann Equation and Kerzman’s Question

Author information +
History +

Abstract

We answer a question raised by Kerzman in 1971. More precisely, we show that the canonical solution of the

¯
-equation satisfies the
Lp
estimate on the polydisc for
p[1,]
. Moreover, the
Lp
estimates for
p[1,]
of
¯
can also be obtained on the product of bounded
C2
planar domains by an observation based on the method developed in [Dong et al. arXiv:2006.14484].

Keywords

equation / Polydisc / Product domains / Uniform estimates

Cite this article

Download citation ▾
Yuan Yuan. Uniform Estimates of the Cauchy–Riemann Equation and Kerzman’s Question. Peking Mathematical Journal, 2025 https://doi.org/10.1007/s42543-025-00096-0

References

[1.]
BarlettaE, LanducciM. Optimal L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} estimates for the canonical solution of the CR-equation in the nonsmooth case. Complex Variables Theory Appl., 1991, 162–393-106
[2.]
BerndtssonB. A smooth pseudoconvex domain in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} for which L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} do not hold. Ark. Mat., 1993, 312209-218
[3.]
ChenL, McNealJD. A solution operator for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on the Hartogs triangle and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates. Math. Ann., 2020, 3761–2407-430
[4.]
Chen, L., McNeal, J.D.: Product domains, Multi-Cauchy transforms, and the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} equation. Adv. Math. 360, 106930, 42 pp. (2020)
[5.]
Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society, Providence, RI; International Press, Boston, MA (2001)
[6.]
DiederichK, FischerB, FornæssJE. Hölder estimates on convex domains of finite type. Math. Z., 1999, 232143-61
[7.]
Dong, X., Pan, Y., Zhang, Y.: Uniform estimates for the canonical solution to the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-equation on product domains. arXiv:2006.14484 (2020)
[8.]
Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (2010)
[9.]
Fassina, M., Pan, Y.: Supnorm estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on product domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n$$\end{document}. Acta Math. Sin. (Engl. Ser) 40(10), 2307–2323 (2024)
[10.]
FeffermanCL, KohnJJ. Hölder estimates on domains of complex dimension two and on three-dimensional CR manifolds. Adv. in Math., 1988, 692223-303
[11.]
Folland, G.B., Kohn, J.J.: The Neumann Problem for the Cauchy–Riemann Complex, Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton, NJ.; University of Tokyo Press, Tokyo (1972)
[12.]
FornæssJE. Sup-norm estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}. Ann. of Math. (2), 1986, 1232335-345
[13.]
FornæssJE, LeeL, ZhangY. On supnorm estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on infinite type convex domains in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}. J. Geom. Anal., 2011, 213495-512
[14.]
Fornæss, J.E., Sibony, N.: Smooth pseudoconvex domains in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} for which the corona theorem and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} fail. In: Complex Analysis and Geometry, pp. 209–222, Univ. Ser. Math., Plenum, New York (1993)
[15.]
GrauertH, LiebI. Das Ramirezsche Integral und die Lösung der Gleichung ∂¯f=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }} f=\alpha $$\end{document} im Bereich der beschränkten Formen. Rice Univ. Stud., 1970, 56229-50
[16.]
GrundmeierD, SimonL, StensønesB. Sup-norm estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}. Pure Appl. Math. Q., 2022, 182531-571
[17.]
HenkinGM. Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications. Mat. Sb. (N.S.), 1969, 784611-632
[18.]
HenkinGM. Integral representation of functions in strictly pseudoconvex domains and applications to the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-problem. Mat. Sb. (N.S.), 1970, 822300-308
[19.]
HenkinGM . A uniform estimate for the solution of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-problem in a Weil region. Uspehi Mat. Nauk, 1971, 263211-212
[20.]
Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North-Holland Mathematical Library, vol. 7. North-Holland Publishing Co., Amsterdam (1990)
[21.]
JinM, YuanY. On the canonical solution of ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on polydisks. C. R. Math. Acad. Sci. Paris, 2020, 3585523-528
[22.]
KerzmanN. Hölder and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for solutions of ∂¯u=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }} u=f$$\end{document} in strongly pseudoconvex domains. Comm. Pure Appl. Math., 1971, 24: 301-379
[23.]
LanducciM. On the projection of L2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(D)$$\end{document} into H(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(D)$$\end{document}. Duke Math. J., 1975, 42: 231-237
[24.]
LiSY . Solving the Kerzman’s problem on the sup-norm estimate for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on product domains. Trans. Amer. Math. Soc., 2024, 37796725-6750
[25.]
Ohsawa, T.: L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Approaches in Several Complex Variables—Towards the Oka–Cartan Theory with Precise Bounds, 2nd edn. Springer Monographs in Mathematics. Springer, Tokyo (2018)
[26.]
RangeRM. Integral kernels and Hölder estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document} on pseudoconvex domains of finite type in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}. Math. Ann., 1990, 288163-74
[27.]
Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics, vol. 108. Springer-Verlag, New York (1986)
[28.]
RangeRM, SiuY-T. Uniform estimates for the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-equation on domains with piecewise smooth strictly pseudoconvex boundaries. Math. Ann., 1973, 206: 325-354
[29.]
SibonyN. Un exemple de domaine pseudoconvexe regulier où l’équation ∂¯u=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }} u = f$$\end{document} n’admet pas de solution bornée pour f bornée. Invent. Math., 1980, 622235-242
[30.]
Straube, E.J.: Lectures on the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Sobolev Theory of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann Problem, ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2010)
[31.]
Yuan, Y.: Uniform estimates of the Cauchy–Riemann equation on product domains, arXiv:2207.02592 (2022)

Accesses

Citations

Detail

Sections
Recommended

/