Potential Theoretic Capacities in Mathematical Physics

Liguang Liu , Jie Xiao

Peking Mathematical Journal ›› : 1 -58.

PDF
Peking Mathematical Journal ›› : 1 -58. DOI: 10.1007/s42543-024-00095-7
Original Article

Potential Theoretic Capacities in Mathematical Physics

Author information +
History +
PDF

Abstract

This paper mainly addresses three perspectives: potential analysis–variational calculus–convex geometry, of the potential theoretic capacities arising from mathematical physics.

Cite this article

Download citation ▾
Liguang Liu, Jie Xiao. Potential Theoretic Capacities in Mathematical Physics. Peking Mathematical Journal 1-58 DOI:10.1007/s42543-024-00095-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren Math. Wiss., vol. 314. Springer, Berlin (1996)

[2]

Betsakos D. Symmetrization, symmetric stable processes, and Riesz capacities. Trans. Am. Math. Soc., 2004, 356(2): 735-755.

[3]

Betsakos D. Addendum to: Symmetrization, symmetric stable processes, and Riesz capacities. Trans. Am. Math. Soc., 2004, 356(9): 3821.

[4]

Chen WX, Li CM. Maximum principles for the fractional $p$-Laplacian and symmetry of solutions. Adv. Math., 2018, 335 735-758.

[5]

Dahlberg BEJ . Regularity properties of Riesz potentials. Indiana Univ. Math. J., 1979, 28(2): 257-268.

[6]

Duren P, Pfaltzgraff J, Thurman E. Physical interpretation and further properties of Robin capacity. St. Petersburg Math. J., 1998, 9(3): 607-614

[7]

Frehse J. Capacity methods in the theory of partial differential equations. Jahresber. Dtsch. Math.-Ver., 1982, 84(1): 1-44

[8]

Goldman M, Novaga M, Ruffini B. Existence and stability for a non-local isoperimetric model of charged liquid drops. Arch. Ration. Mech. Anal., 2015, 217(1): 1-36.

[9]

Goldman, M., Novaga, M., Ruffini, B.: Rigidity of the ball for an isoperimetric problem with strong capacitary repulsion. J. Eur. Math. Soc., https://doi.org/10.4171/JEMS/1451 (2024)

[10]

Goldman M, Ruffini B. Equilibrium shapes of charged droplets and related problems: (mostly) a review. Geom. Flows, 2017, 2 94-104

[11]

Kurokawa T, Mizuta Y. On the order at infinity of Riesz potentials. Hiroshima Math. J., 1979, 9(2): 533-545.

[12]

Landkov NS Foundations of Modern Potential Theory, 1972 Berlin Springer.

[13]

Lieb EH. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2), 1983, 118(2): 349-374.

[14]

Lieb, E.H., Loss, M.: Analysis, 2nd edn. Grad. Stud. Math., vol. 14. Amer. Math. Soc., Providence (2001)

[15]

Maz’ya, V.: Sobolev, capacitary and isocapacitary inequalities. Summer School and Workshop “Harmonic Analysis and Related Topics”, Lisbon, June 21–25, 52 pp. (2010)

[16]

Mendez O, Reichel W. Electrostatic characterization of spheres. Forum Math., 2000, 12(2): 223-245

[17]

Méndez-Hernández PJ. An isoperimetric inequality for Riesz capacities. Rocky Mountain J. Math., 2006, 36(2): 675-682.

[18]

Menon, G.: Lectures on partial differential equations (Dec. 2005). https://www.dam.brown.edu/people/menon/publications/notes/pde.pdf (2007)

[19]

Meyers NG. A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand., 1970, 26 255-292.

[20]

Novaga M, Ruffini B. Brunn-Minkowski inequality for the 1-Riesz capacity and level set convexity for the 1/2-Laplacian. J. Convex Anal., 2015, 22(4): 1125-1134

[21]

Reichel W. Characterization of balls by Riesz-potentials. Ann. Mat. Pura Appl. (4), 2009, 188(2): 235-245.

[22]

Renggli H. An inequality for logarithmic capacities. Pac. J. Math., 1961, 11 313-314.

[23]

Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math., 2007, 60(1): 67-112.

[24]

Stein, E.M., Shakarchi, R.: Real Analysis—Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis, vol. 3. Princeton University Press, Princeton (2005)

[25]

Watanabe T. The isoperimetric inequality for isotropic unimodal Lévy processes. Z. Wahrsch. Verw. Gebiete, 1983, 63(4): 487-499.

[26]

Xiao J. $P$-capacity vs surface-area. Adv. Math., 2017, 308 1318-1336.

Funding

NSERC of Canada(202979)

NNSF of China(12371102)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/