PDF
Abstract
Based on the pluripotential methods developed in Darvas and Zhang (Commun Pure Appl Math 77(12):4289–4327, 2024), we give a simplified prove for a result of Chi Li, which states that a log Fano vatiety admits a Kähler–Einstein metric if it has vanishing Futaki invariant and its reduced delta invariant is bigger than one.
Cite this article
Download citation ▾
Kewei Zhang.
Reduced Delta Invariant and Kähler–Einstein Metrics.
Peking Mathematical Journal 1-30 DOI:10.1007/s42543-024-00093-9
| [1] |
AltmannK, HausenJ, SüssH. Gluing affine torus actions via divisorial fans. Transform. Groups, 2008, 13(2): 215-242
|
| [2] |
BermanRJ. K-polystability of ${\mathbb{Q} }$-Fano varieties admitting Kähler–Einstein metrics. Invent. Math., 2016, 203(3): 973-1025
|
| [3] |
BermanRJ, BoucksomS, EyssidieuxP, GuedjV, ZeriahiA. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. J. Reine Angew. Math., 2019, 751: 27-89
|
| [4] |
BermanRJ, BoucksomS, JonssonM. A variational approach to the Yau–Tian–Donaldson conjecture. J. Am. Math. Soc., 2021, 34(3): 605-652
|
| [5] |
BerndtssonB. A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math., 2015, 200(1): 149-200
|
| [6] |
Blum, H., Jonsson, M.: Thresholds, valuations, and K-stability. Adv. Math. 365, 107062, 57 pp. (2020)
|
| [7] |
BoucksomS, HisamotoT, JonssonM. Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 2017, 67(2): 743-841
|
| [8] |
Darvas, T.: Geometric pluripotential theory on Kähler manifolds. In: Advances in Complex Geometry, pp. 1–104. Contemp. Math., 735, Amer. Math. Soc., Providence, RI (2019)
|
| [9] |
DarvasT, RubinsteinYA. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soc., 2017, 30(2): 347-387
|
| [10] |
Darvas, T., Xia, M.: The closures of test configurations and algebraic singularity types. Adv. Math. 397, Paper No. 108198, 56 pp. (2022)
|
| [11] |
Darvas, T., Xia, M., Zhang, K.: A transcendental approach to non-Archimedean metrics of pseudoeffective classes. arXiv:2302.02541v3 (2024) (To appear in Comment. Math. Helv.)
|
| [12] |
DarvasT, ZhangK. Twisted Kähler–Einstein metrics in big classes. Commun. Pure Appl. Math., 2024, 77(12): 4289-4327
|
| [13] |
FujitaK. A valuative criterion for uniform K-stability of ${\mathbb{Q} }$-Fano varieties. J. Reine Angew. Math., 2019, 751: 309-338
|
| [14] |
FujitaK, OdakaY. On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2), 2018, 70(4): 511-521
|
| [15] |
FutakiA. An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 1983, 73(3): 437-443
|
| [16] |
HanJ, LiC. On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. Commun. Pure Appl. Math., 2023, 76(9): 1793-1867
|
| [17] |
Hisamoto, T.: Stability and coercivity for toric polarizations. arXiv:1610.07998v3 (2020)
|
| [18] |
LiC. K-semistability is equivariant volume minimization. Duke Math. J., 2017, 166(16): 3147-3218
|
| [19] |
LiC. $G$-uniform stability and Kähler–Einstein metrics on Fano varieties. Invent. Math., 2022, 227(2): 661-744
|
| [20] |
LiC. Geodesic rays and stability in the cscK problem. Ann. Sci. Éc. Norm. Supér. (4), 2022, 55(6): 1529-1574
|
| [21] |
LiC, TianG, WangF. On the Yau–Tian–Donaldson conjecture for singular Fano varieties. Commun. Pure Appl. Math., 2021, 74(8): 1748-1800
|
| [22] |
LiC, TianG, WangF. The uniform version of Yau–Tian–Donaldson conjecture for singular Fano varieties. Peking Math. J., 2022, 5(2): 383-426
|
| [23] |
LiC, WangX, XuC. On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties. Duke Math. J., 2019, 168(8): 1387-1459
|
| [24] |
LiuY, XuC, ZhuangZ. Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. Math. (2), 2022, 196(2): 507-566
|
| [25] |
Mabuchi, T.: $K$-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)
|
| [26] |
MatsushimaY. Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J., 1957, 11: 145-150
|
| [27] |
RossJ, Witt NyströmD. Analytic test configurations and geodesic rays. J. Symplectic Geom., 2014, 12(1): 125-169
|
| [28] |
RubinsteinYA, TianG, ZhangK. Basis divisors and balanced metrics. J. Reine Angew. Math., 2021, 778: 171-218
|
| [29] |
TianG. K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math., 2015, 68(7): 1085-1156
|
| [30] |
Trusiani, A.: A relative Yau–Tian–Donaldson conjecture and stability thresholds. Adv. Math. 441, Paper No. 109537, 95 pp. (2024)
|
| [31] |
XuC, ZhuangZ. On positivity of the CM line bundle on K-moduli spaces. Ann. Math. (2), 2020, 192(3): 1005-1068
|
| [32] |
ZhangK. A quantization proof of the uniform Yau–Tian–Donaldson conjecture. J. Eur. Math. Soc., 2024, 26(12): 4763-4778
|
Funding
National Natural Science Foundation of China(NSFC 12101052)
RIGHTS & PERMISSIONS
Peking University