PDF
Abstract
Based on the pluripotential methods developed in Darvas and Zhang (Commun Pure Appl Math 77(12):4289–4327, 2024), we give a simplified prove for a result of Chi Li, which states that a log Fano vatiety admits a Kähler–Einstein metric if it has vanishing Futaki invariant and its reduced delta invariant is bigger than one.
Cite this article
Download citation ▾
Kewei Zhang.
Reduced Delta Invariant and Kähler–Einstein Metrics.
Peking Mathematical Journal 1-30 DOI:10.1007/s42543-024-00093-9
| [1] |
AltmannK, HausenJ, SüssH. Gluing affine torus actions via divisorial fans. Transform. Groups, 2008, 13(2): 215-242
|
| [2] |
BermanRJ. K-polystability of ${\mathbb{Q} }$-Fano varieties admitting Kähler–Einstein metrics. Invent. Math., 2016, 203(3): 973-1025
|
| [3] |
BermanRJ, BoucksomS, EyssidieuxP, GuedjV, ZeriahiA. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. J. Reine Angew. Math., 2019, 751: 27-89
|
| [4] |
BermanRJ, BoucksomS, JonssonM. A variational approach to the Yau–Tian–Donaldson conjecture. J. Am. Math. Soc., 2021, 34(3): 605-652
|
| [5] |
BerndtssonB. A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math., 2015, 200(1): 149-200
|
| [6] |
Blum, H., Jonsson, M.: Thresholds, valuations, and K-stability. Adv. Math. 365, 107062, 57 pp. (2020)
|
| [7] |
BoucksomS, HisamotoT, JonssonM. Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 2017, 67(2): 743-841
|
| [8] |
Darvas, T.: Geometric pluripotential theory on Kähler manifolds. In: Advances in Complex Geometry, pp. 1–104. Contemp. Math., 735, Amer. Math. Soc., Providence, RI (2019)
|
| [9] |
DarvasT, RubinsteinYA. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soc., 2017, 30(2): 347-387
|
| [10] |
Darvas, T., Xia, M.: The closures of test configurations and algebraic singularity types. Adv. Math. 397, Paper No. 108198, 56 pp. (2022)
|
| [11] |
Darvas, T., Xia, M., Zhang, K.: A transcendental approach to non-Archimedean metrics of pseudoeffective classes. arXiv:2302.02541v3 (2024) (To appear in Comment. Math. Helv.)
|
| [12] |
DarvasT, ZhangK. Twisted Kähler–Einstein metrics in big classes. Commun. Pure Appl. Math., 2024, 77(12): 4289-4327
|
| [13] |
FujitaK. A valuative criterion for uniform K-stability of ${\mathbb{Q} }$-Fano varieties. J. Reine Angew. Math., 2019, 751: 309-338
|
| [14] |
FujitaK, OdakaY. On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2), 2018, 70(4): 511-521
|
| [15] |
FutakiA. An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 1983, 73(3): 437-443
|
| [16] |
HanJ, LiC. On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. Commun. Pure Appl. Math., 2023, 76(9): 1793-1867
|
| [17] |
Hisamoto, T.: Stability and coercivity for toric polarizations. arXiv:1610.07998v3 (2020)
|
| [18] |
LiC. K-semistability is equivariant volume minimization. Duke Math. J., 2017, 166(16): 3147-3218
|
| [19] |
LiC. $G$-uniform stability and Kähler–Einstein metrics on Fano varieties. Invent. Math., 2022, 227(2): 661-744
|
| [20] |
LiC. Geodesic rays and stability in the cscK problem. Ann. Sci. Éc. Norm. Supér. (4), 2022, 55(6): 1529-1574
|
| [21] |
LiC, TianG, WangF. On the Yau–Tian–Donaldson conjecture for singular Fano varieties. Commun. Pure Appl. Math., 2021, 74(8): 1748-1800
|
| [22] |
LiC, TianG, WangF. The uniform version of Yau–Tian–Donaldson conjecture for singular Fano varieties. Peking Math. J., 2022, 5(2): 383-426
|
| [23] |
LiC, WangX, XuC. On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties. Duke Math. J., 2019, 168(8): 1387-1459
|
| [24] |
LiuY, XuC, ZhuangZ. Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. Math. (2), 2022, 196(2): 507-566
|
| [25] |
Mabuchi, T.: $K$-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)
|
| [26] |
MatsushimaY. Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J., 1957, 11: 145-150
|
| [27] |
RossJ, Witt NyströmD. Analytic test configurations and geodesic rays. J. Symplectic Geom., 2014, 12(1): 125-169
|
| [28] |
RubinsteinYA, TianG, ZhangK. Basis divisors and balanced metrics. J. Reine Angew. Math., 2021, 778: 171-218
|
| [29] |
TianG. K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math., 2015, 68(7): 1085-1156
|
| [30] |
Trusiani, A.: A relative Yau–Tian–Donaldson conjecture and stability thresholds. Adv. Math. 441, Paper No. 109537, 95 pp. (2024)
|
| [31] |
XuC, ZhuangZ. On positivity of the CM line bundle on K-moduli spaces. Ann. Math. (2), 2020, 192(3): 1005-1068
|
| [32] |
ZhangK. A quantization proof of the uniform Yau–Tian–Donaldson conjecture. J. Eur. Math. Soc., 2024, 26(12): 4763-4778
|
Funding
National Natural Science Foundation of China(NSFC 12101052)
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.