Reduced Delta Invariant and Kähler–Einstein Metrics

Kewei Zhang

Peking Mathematical Journal ›› : 1 -30.

PDF
Peking Mathematical Journal ›› : 1 -30. DOI: 10.1007/s42543-024-00093-9
Original Article

Reduced Delta Invariant and Kähler–Einstein Metrics

Author information +
History +
PDF

Abstract

Based on the pluripotential methods developed in Darvas and Zhang (Commun Pure Appl Math 77(12):4289–4327, 2024), we give a simplified prove for a result of Chi Li, which states that a log Fano vatiety admits a Kähler–Einstein metric if it has vanishing Futaki invariant and its reduced delta invariant is bigger than one.

Cite this article

Download citation ▾
Kewei Zhang. Reduced Delta Invariant and Kähler–Einstein Metrics. Peking Mathematical Journal 1-30 DOI:10.1007/s42543-024-00093-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AltmannK, HausenJ, SüssH. Gluing affine torus actions via divisorial fans. Transform. Groups, 2008, 13(2): 215-242

[2]

BermanRJ. K-polystability of ${\mathbb{Q} }$-Fano varieties admitting Kähler–Einstein metrics. Invent. Math., 2016, 203(3): 973-1025

[3]

BermanRJ, BoucksomS, EyssidieuxP, GuedjV, ZeriahiA. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. J. Reine Angew. Math., 2019, 751: 27-89

[4]

BermanRJ, BoucksomS, JonssonM. A variational approach to the Yau–Tian–Donaldson conjecture. J. Am. Math. Soc., 2021, 34(3): 605-652

[5]

BerndtssonB. A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math., 2015, 200(1): 149-200

[6]

Blum, H., Jonsson, M.: Thresholds, valuations, and K-stability. Adv. Math. 365, 107062, 57 pp. (2020)

[7]

BoucksomS, HisamotoT, JonssonM. Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 2017, 67(2): 743-841

[8]

Darvas, T.: Geometric pluripotential theory on Kähler manifolds. In: Advances in Complex Geometry, pp. 1–104. Contemp. Math., 735, Amer. Math. Soc., Providence, RI (2019)

[9]

DarvasT, RubinsteinYA. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soc., 2017, 30(2): 347-387

[10]

Darvas, T., Xia, M.: The closures of test configurations and algebraic singularity types. Adv. Math. 397, Paper No. 108198, 56 pp. (2022)

[11]

Darvas, T., Xia, M., Zhang, K.: A transcendental approach to non-Archimedean metrics of pseudoeffective classes. arXiv:2302.02541v3 (2024) (To appear in Comment. Math. Helv.)

[12]

DarvasT, ZhangK. Twisted Kähler–Einstein metrics in big classes. Commun. Pure Appl. Math., 2024, 77(12): 4289-4327

[13]

FujitaK. A valuative criterion for uniform K-stability of ${\mathbb{Q} }$-Fano varieties. J. Reine Angew. Math., 2019, 751: 309-338

[14]

FujitaK, OdakaY. On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2), 2018, 70(4): 511-521

[15]

FutakiA. An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 1983, 73(3): 437-443

[16]

HanJ, LiC. On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. Commun. Pure Appl. Math., 2023, 76(9): 1793-1867

[17]

Hisamoto, T.: Stability and coercivity for toric polarizations. arXiv:1610.07998v3 (2020)

[18]

LiC. K-semistability is equivariant volume minimization. Duke Math. J., 2017, 166(16): 3147-3218

[19]

LiC. $G$-uniform stability and Kähler–Einstein metrics on Fano varieties. Invent. Math., 2022, 227(2): 661-744

[20]

LiC. Geodesic rays and stability in the cscK problem. Ann. Sci. Éc. Norm. Supér. (4), 2022, 55(6): 1529-1574

[21]

LiC, TianG, WangF. On the Yau–Tian–Donaldson conjecture for singular Fano varieties. Commun. Pure Appl. Math., 2021, 74(8): 1748-1800

[22]

LiC, TianG, WangF. The uniform version of Yau–Tian–Donaldson conjecture for singular Fano varieties. Peking Math. J., 2022, 5(2): 383-426

[23]

LiC, WangX, XuC. On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties. Duke Math. J., 2019, 168(8): 1387-1459

[24]

LiuY, XuC, ZhuangZ. Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. Math. (2), 2022, 196(2): 507-566

[25]

Mabuchi, T.: $K$-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)

[26]

MatsushimaY. Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J., 1957, 11: 145-150

[27]

RossJ, Witt NyströmD. Analytic test configurations and geodesic rays. J. Symplectic Geom., 2014, 12(1): 125-169

[28]

RubinsteinYA, TianG, ZhangK. Basis divisors and balanced metrics. J. Reine Angew. Math., 2021, 778: 171-218

[29]

TianG. K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math., 2015, 68(7): 1085-1156

[30]

Trusiani, A.: A relative Yau–Tian–Donaldson conjecture and stability thresholds. Adv. Math. 441, Paper No. 109537, 95 pp. (2024)

[31]

XuC, ZhuangZ. On positivity of the CM line bundle on K-moduli spaces. Ann. Math. (2), 2020, 192(3): 1005-1068

[32]

ZhangK. A quantization proof of the uniform Yau–Tian–Donaldson conjecture. J. Eur. Math. Soc., 2024, 26(12): 4763-4778

Funding

National Natural Science Foundation of China(NSFC 12101052)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

346

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/